Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
pain six paths
Xem chi tiết
Nhat Lee Vo
5 tháng 9 2016 lúc 16:21

|x-3|>=0 mọi x

|x-3|+2>=2 mọi x

(|x-3|+2)^2 >=4 moi x

|y+3| >=0 mọi y

=>(|x-3|+2)^2 + |y+3| >=4 mọi x,y

=>P=(|x-3|+2)^2 + |y+3| + 2007>=2011 mọi x,y

Vậy GTNN của P la 2011 tại x=3,y=-3

Trần Đức Nam
Xem chi tiết
Minh Anh
5 tháng 9 2016 lúc 14:58

\(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\) 

Có: \(\left(\left|x-3\right|+2\right)^2\ge4\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge2021\)

\(\Leftrightarrow\hept{\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\y+3=0\end{cases}}\Rightarrow\hept{\begin{cases}x-3=0\\y=-3\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

Vậy: \(Min_P=2021\) tại \(\hept{\begin{cases}x=3\\y=-3\end{cases}}\)

Tuấn Anh Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 18:26

Ta có : \(\begin{cases}\left|x-3\right|\ge0\\\left|y+3\right|\ge0\end{cases}\) \(\Rightarrow\begin{cases}\left(\left|x-3\right|+2\right)^2\ge4\\\left|y+3\right|+2007\ge2007\end{cases}\)

\(\Rightarrow P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\ge4+2007=2011\)

Dấu "=" xảy ra \(\Leftrightarrow\begin{cases}\left|x-3\right|=0\\\left|y+3\right|=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=3\\y=-3\end{cases}\)

Vậy Min P = 2011 <=> (x;y) = (3;-3)

Võ Đông Anh Tuấn
5 tháng 9 2016 lúc 18:26

\(P=\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2007\)

Có \(\left(\left|x-3\right|+2\right)^2\ge4\)

\(\left|y+3\right|\ge0\)

\(\Rightarrow\left(\left|x-3\right|+2\right)^2+\left|y+3\right|+2017\ge2021\)

\(\Leftrightarrow\begin{cases}\left(\left|x-3\right|+2\right)^2=4\\y+3=0\end{cases}\Rightarrow\begin{cases}x-3=0\\y=-3\end{cases}\Rightarrow\begin{cases}x=3\\y=-3\end{cases}\)

Vậy \(Min_P=2021\) tại \(\begin{cases}x=3\\y=-3\end{cases}\)

nguyen van dung
Xem chi tiết
Lưu Văn Dũng
7 tháng 10 2015 lúc 20:21

đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.  

Vậy GTNN của A là -7.

Phạm Khánh Huyền
Xem chi tiết
thanh tam tran
Xem chi tiết
mik ckua ten
27 tháng 2 2017 lúc 13:16

=(x^2+y^2+2xy​)+(2x+2y)+3

=((x+y)+2(x+y) +1)+2

=(x+y+1)2+2

vậy Amin=2

Trà My
27 tháng 2 2017 lúc 16:41

\(A=x^2+y^2+2xy+2x+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+y^2+2y+3\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y^2+2y+1\right)+2\)

<=>\(A=x^2+2x\left(y+1\right)+\left(y+1\right)^2+2\)

<=>\(A=\left(x+y+1\right)^2+2\ge2\)

Cô Gái Mùa Đông
Xem chi tiết
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:16

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Khánh Ngọc
15 tháng 10 2020 lúc 19:39

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

Khách vãng lai đã xóa
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:41

b) Cái này là bạn đang chứng minh dùng CBS mà ?

Khách vãng lai đã xóa
Ngọc Hướng
Xem chi tiết
Serena chuchoe
19 tháng 10 2017 lúc 16:25

a) \(F=2\left|3x-2\right|-1\)

\(\left|3x-2\right|\ge0\forall x\Rightarrow2\left|3x-2\right|\ge0\)

\(\Rightarrow2\left|3x-2\right|-1\ge-1\)

''='' xảy ra khi \(3x-2=0\Rightarrow x=\dfrac{2}{3}\)

=> \(F_{min}=-1\)

b) \(G=x^2+3\left|y-2\right|-1\)

Ta có: \(\left\{{}\begin{matrix}x^2\ge0\forall x\\3\left|y-2\right|\ge0\forall y\end{matrix}\right.\)

=> \(x^2+3\left|y-2\right|\ge0\Rightarrow x^2+3\left|y-2\right|-1\ge-1\)

''='' xảy ra khi \(\left\{{}\begin{matrix}x^2=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy \(G_{min}=-1\)

 Mashiro Shiina
19 tháng 10 2017 lúc 16:25

\(A=2\left|3x-2\right|-1\ge-1\)

Dấu "=" xảy ra khi : \(x=\dfrac{2}{3}\)

\(B=x^2+3\left|y-2\right|-1\ge-1\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Lương Song Hoành
Xem chi tiết