Chứng minh rằng không có 3 số tự nhiên liên tiếp nào mà tổng lập phương của chúng bằng 2013.
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
Cho P=1.3.5.7...2013. Chứng minh rằng trong 3 số tự nhiên liên tiếp 2P-1; 2P; 2P+1 không có số nào là số chính phương.
Ta có: P=1.3.5.7....2013 là tích của các số lẻ \(\Rightarrow\)P cũng là số lẻ
Ta có: 2P là số chẵn \(\Rightarrow\)2P chia hết cho 2 nhưng không chia hết cho 4
\(\Rightarrow\)2P không phải là số chính phương (Vì số chính phương chia hết cho 2 thì cũng chia hết cho 4)
Lại có 2P chia 4 dư 2 \(\Rightarrow\)2P + 1 chia 4 dư 3 \(\Rightarrow\)2P+1 không phải là số chính phương (vì số chính phương luôn chia hết cho 4 hoặc chia 4 dư 1)
Mặt khác P=1.3.5...2013 chia hết cho 3 \(\Rightarrow\)2P chia hết cho 3
\(\Rightarrow\)2P - 1 không chia hết cho 3 \(\Rightarrow\)2P-1 không phải số chính phương
Vậy với P=1.3.5....2013 thi trong 3 số tự nhiên liên tiếp 2P-1;2P;2P+1 không có số nào là số chính phương
Một số tự nhiên n là tổng bình phương của 3 số tự nhiên liên tiếp. Chứng minh rằng n không thể có đúng 17 ước số.
Bạn có thể tham khảo tại đây:
https://hoc24.vn/cau-hoi/1-so-tu-nhien-n-la-tong-binh-phuong-cua-3-so-tu-nhien-lien-tiep-chung-minh-rang-n-ko-the-co-17-uoc-so.56414140611
Cho N = 1.3.5.7....2013. Chứng minh rằng trong 3 số tự nhiên liên tiếp 2N -1; 2N ;2N + 1 ko có số nào là số chính phương
Ta có: N = 1.3.5.7.....2013
=> 2N = 2.1.3.5.7.....2013
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N không là số chính phương
Vì 2N chia hết cho 3
=> 2N - 1 chia cho 3 dư 2
=> 2N - 1 không là số chính phương
Vì 2N chia hết cho 2 mà không chia hết cho 4
=> 2N chia cho 4 dư 2
=> 2N + 1 chia cho 4 dư 3
=> 2N + 1 không là số chính phương
Vậy trong 3 số tự nhiên liên tiếp 2N - 1, 2N, 2N + 1 không có số nào là số chính phương.
Chứng minh rằng Tổng các lập phương của ba số tự nhiên liên tiếp chia hết cho 9
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương. - Tìm trên Google
12. a. Chứng minh rằng nếu mỗi số trong hai số nguyên là tổng các bình phương của hai số nguyên nào đó thì tích của chúng có thể viết dưới dạng tổng hai bình phương.
b. Chứng minh rằng tổng các bình phương của k số nguyên liên tiếp (k = 3, 4, 5) không là số chính phương.
Cho 7 số tự nhiên liên tiếp . Chứng minh rằng ta luôn tìm được 3 số mà tổng của chúng luôn chia hết cho 3 ( nhớ trình bày cách giải )
Mình nghĩ đề bài của bạn bị sai. Lấy ví dụ trường hợp : 2 số có dạng 3k + 2 và 1 số có dạng 3k + 1
=> 2(3k + 2) + 3k + 1 = 9k + 5
=> ko chia hết cho 3
VD 11 + 14 + 100 = 125 ko chia hết cho 3
Nếu thấy mình đúng thì li-ke cho mình nhé