cho tam giác abc vuông tại aco ab=15cm,ac=20cm.tia phân giác của góc abc cắt ac tại d
a) tính độ dài cạnh bc,ad
b) từ d kẻ đường vuông góc với bc tại h (h thuộc bc).chứng minh CH.CB=CĐ.CẢ
c) tính diện tích tam giác CHD
Cho ∆𝐴𝐵𝐶 vuông tại A có AB = 15cm, AC = 20cm. Tia phân giác của 𝐴𝐵𝐶̂ cắt AC tại D.
a) Tính độ dài BC, AD
b) Từ D kẻ đường vuông góc với BC tại H (𝐻∈𝐵𝐶). Chứng minh: CH.CB = CD.CA
c) Tính diện tích tam giác CHD
Mong những người Ae thiện lành giúp tôi
b) xét tg DHC và tg BAC có A=H =90 độ
C chung
=> tg DHC ~ tg BAC( g.g)
=> \(\dfrac{CH}{AC}=\dfrac{CD}{BC}=>CH.CB=CD.CA\)
c) ta có AC=AD+DC => DC=AC-AD=20-9,4=10,6 cm
tg DHC~ tg BAC => \(\dfrac{SDHC}{SBAC}=\left(\dfrac{DC}{BC}\right)^2=\left(\dfrac{10,6}{25}\right)^2\)
=> SDHC= SBAC.\(\left(\dfrac{10,6}{25}\right)^2\)
Chỗ này bạn thay số và tính nhé
a) Xét ABC cos A=90 độ=> BC2=AC2+AB2( dl Py ta go)
=> BC2= 202+152=625 => BC=25 cm
Xét tg ABC có BD pg B
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}=>\dfrac{AB}{BC+AB}=\dfrac{AD}{AD+DC}< =>\dfrac{15}{15+20}=\dfrac{AD}{BC}< =>\dfrac{15}{35}=\dfrac{AD}{25}=>AD=\dfrac{15.25}{35}~~9,4cm\)
Cho tam giác ABC vuông tại A, kẻ tia phân giác góc ABC cắt AC tại D
a. Biết BC = 5cm, AB= 3cm. Tính AC và AD
b. Qua D kẻ DH vuông góc với BC tại H. CHứng minh ΔABC ᔕ ΔHDC từ đó chứng minh CH.CB = CD.CA
c. E là hình chiếu của A trên BC. Chứng minh BC/BA = HC/HE
d. O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO vafCA lần lượt tại M và N. Chứng minh M là trung điểm của BN
giúp mình câu c,d
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCD}\) chung
Do đó: ΔCHD đồng dạng với ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)
=>\(CH\cdot CB=CA\cdot CD\)
c: Ta có: AE\(\perp\)BC
DH\(\perp\)BC
Do đó: HD//AE
Xét ΔAEC có HD//AE
nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)
mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)
nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)
d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
=>BD\(\perp\)AH tại O và O là trung điểm của AH
=>OA=OH(3)
Xét ΔCMN có AO//MN
nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)
Xét ΔCBM có OH//BM
nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)
Từ (3),(4),(5) suy ra MN=BM
=>M là trung điểm của BN
Cho tam giác ABC vuông tại A có AB = 5cm , AC = 12cm . Kẻ đường cao AH ( H thuộc BC).
a) Tính độ dài cạnh BC
b) Tia phân giác của góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC ( K thuộc AC ). Chứng minh tam giác AHD = tam giác AKD
c) Chứng minh tam giác BAD cân
d) Tia phân giác của góc BAH cắt BC tại E. Chứng minh AB + AC = BC + DE
giúp mình với ạ , tầm 30 phút nữa mình phải kt bài này rồi :(
Cho tam giac ABC vuông tại A có AB = 6cm, AC = 8cm. Kẻ đường cao AH sao cho AH vuông góc với BC (H thuộc BC) a. Tính độ dài BC b. Tia phân giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc AC (K thuộc AC). Chứng minh tam giác AHD = AKD c. Chứng minh tam giác BAD cân d. Tia phân giác góc BAH cắt canh BC tại E. Chứng minh: AB + AC = BC + DE
câu d ai giúp vớiCho tam giác ABC vuông tại A có AB=6cm,AC=8cm. Kẻ đường cao AH vuông góc với BC (H thuộc BC).
a) Tính độ dài BC.
b) Tia phản giác góc HAC cắt cạnh BC tại D. Qua D kẻ DK vuông góc với AC (K thuộc AC). Chứng minh: tam giác AHD = tam giác AKD.
c) Chứng minh: tam giác BAD cân.
d) Tia phân giác góc BAH cắt cạnh BC tại E. Chứng minh: AB+AC=BC+DE.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
b) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
\(\widehat{HAD}=\widehat{KAD}\)(AD là tia phân giác của \(\widehat{HAK}\))
Do đó: ΔAHD=ΔAKD(cạnh huyền-góc nhọn)
c) Ta có: ΔADH vuông tại H(gt)
nên \(\widehat{HDA}+\widehat{HAD}=90^0\)(hai góc nhọn phụ nhau)
hay \(\widehat{BDA}+\widehat{HAD}=90^0\)(2)
Ta có: \(\widehat{BAD}+\widehat{CAD}=\widehat{BAC}\)(tia AD nằm giữa hai tia AB,AC)
nên \(\widehat{BAD}+\widehat{KAD}=90^0\)(3)
Từ (2) và (3) suy ra \(\widehat{BDA}=\widehat{BAD}\)
Xét ΔBAD có \(\widehat{BDA}=\widehat{BAD}\)(cmt)
nên ΔBAD cân tại B(Định lí đảo của tam giác cân)
Cho tam giác ABC vuông tại A có AB = 5cm , AC = 12cm . Kẻ đường cao AH ( H thuộc BC)
a) Tính độ dài cạnh BC
b) Tia phân giác của góc HAC cắt cạnh BC qua D. Qua D kẻ DK vuông góc với AC ( K thuộc AC ). Chứng minh rằng tam giác AHD = tam giác AKD
c) Chứng minh tam giác BAD cân
d) Tia phân giác của góc BAH cắt BC tại E. Chứng minh AB+AC = BC + DE
a) Xét \(\Delta ABC\)có AB = 5cm; AC = 12cm. Theo định lý Py-ta-go ta có:
\(BC^2=AB^2+AC^2\)
\(BC^2=5^2+12^2\)
\(BC^2=25+144\)
\(BC^2=169\)
\(BC=13\)
Vậy cạnh BC = 13cm
b)Xét tam giác AHD và tam giác AKD ta có:
\(\widehat{AHD}=\widehat{AKD}=90^o\)
AD chung
\(\widehat{DAH}=\widehat{DAK}\)(AD là tia phân giác)
=> tam giác AHD = tam giác AKD (g.c.g)
Cho tam giác ABC vuông ở A biết AB = 8cm AC = 6cm, tia phân giác của góc A cắt cạnh huyền tại điểm D từ D kẻ đường thẳng vuông góc với AC cắt AB tại H chứng minh rằng a, tính độ dài BC b, chứng minh tam giác ABC đồng dạng với tam giác HDC c, tính tỉ số BD và DC tính tỉ số diện tích của tam giác ADH và tam giác ADC
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
cho tam giác abc vuông tại a .cạnh ab=6cm, ac=8cm. kẻ đường phân giác abc cắt ac tại d. kẻ ce vuông góc với bd tại e. 1/tính độ dài bc. 2/ chứng minh tam giác abc đồng dạng với tam giác ebc. 3/ chứng minh cd.be=ce.cb . 4/ gọi eh là đường cao của tam giác ebc.chứng minh ch.cb=ed.eb
tao là thằn lớp 5 .thế mà tao cũng giải đc đấy . bài này là tao sản xuất có đáp án là .........
Cho tam giác ABC vuông tại A, kẻ tia phân giác cắt AC tại D.
a) Biết BC = 5cm, AB = 3 cm. Tính AC và AD.
b) Qua D kẻ DH vuông góc với BC tại H. Chứng minh ∆ABC ∆HDC từ đó chứng minh CH.CB = CD.CA.
c) E là hình chiếu của A trên BC. Chứng minh .
d) O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO và CA lần lượt tại M và N. Chứng minh M là trung điểm của BN.