abc chia hết cho 27 . Chứng tỏ rằng bca chia hết cho 27
abc chia hết cho 27 . Chứng tỏ rằng bca chia hết cho 27
abc chia hết cho 27 => 100a + 10 b + c chia hết cho 27
100a + 10b + c = 81a + (19a + 10b+ c). Vì 81a chia hết cho 27 nên 19a + 10b + c chia hết cho 27
Ta có: bca = 100b + 10c + a = 81b + (19b + 10c + a) = 81b + (19a + 10b + c) + (9b + 9c - 18a)
= 81b + (19a + 10b + c) + 9.(b +c - 2a) (1)
Nhận xét: 81b và (19a + 10b + c) đều chia hết cho 27 (2)
b+ c - 2a = (b+c+a) - 3a luôn chia hết cho 3 (Vì abc chia hết cho 27 nên chia hết cho 3 => a+b + c chia hết cho 3)
=> 9.(b+c- 2a) chia hết cho 27 (3)
(1)(2)(3) => bca chia hết 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 \(=\)\(\Rightarrow\) a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m \(\in\) N)
ta có: abc = 27k với (k \(\in\) N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n \(\in\) N)
=> bca = 9m = 27n => bca chia hết cho 27 \(\left(ĐPCM\right)\).
Cho abc chia hết cho 27. Chứng minh rằng: bca chia hết cho 27.
Ta có : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Ta thấy : abc chia hết cho 27
=> 100.a + 10.b + c chia hết cho 27
=> 10. ( 100.a + 10.b + c ) chia hết cho 27
=> 1000.a + 100.b + 10.c chia hết cho 27
=> 999.a + ( 100.b + 10.c + a ) chia hết cho 27.
Mà 999.a chia hết cho 27 nên 100.b + 10.c + a chia hết cho 27
Hay bca chia hết cho 27.
Vậy bca chia hết cho 27.
Cho abc chia hết cho 27. Chứng minh rằng: bca chia hết cho 27
Ta có:abc-bca
=100xa+10xb+c-100xb-10xc-a
=99xa-90xb-9xc
=9x(11xa-10xb-c) chia hết cho 9(1)
Do abc chia hết cho 27=>abc chia hết cho 3=>a+b+c chia hết cho 3
=>14xa+14xb+14xc chia hết cho 3
Ta có:3xa+24xb+15xc cũng chia hết cho 3
=>14xa+14xb+14xc-3xa-24xb-15xc chia hết cho a
=>11xa-10xb-c chia hết cho 3
=>(1) chia hết cho 27
=>abc-bca chia hết cho 27
Mà abc chia hết cho 27
=>bca chia hết cho 27
Giải:
abc chia hết cho 27
=> abc0 chia hết cho 27
=> 100a+bc0 chia hết cho 27
=> 999a+a+bc0 chia hết cho 27
=> 27×37a+bca chia hết cho 27
Vì 27 chia hết cho 27 nên bca chia hết cho 27.
vì 27 chia hết cho 27 nên abc chia hết cho 17
cho mk nha
Cho abc chia hết cho 27. Chứng minh rằng bca chia hết cho 27
abc chia hết cho 27 => abc chia hết cho 3 và 9 mà chia hết cho 9 thì chia hết cho 3 => a+b+c chia hết cho 3 và 9
vậy suy ra bca tổng của b+c+a = a+b+c và cũng chia hết cho 3 và 9 => nếu abc chia hết cho 27 thì bca cũng chia hết cho 27
abc là nhân thì ko cần phải cm vì a.b.c=b.c.a
cho số abc chia hết cho 27 chứng minh rằng só bca chia hết cho 27
Ta có:abc chia hết cho 27
=>abc chia hết cho 3 và 9
=>(a+b+c) chia hết cho 3 và 9
=>(b+c+a) chia hết cho 3 và 9
=>bca chia hết cho 3 và 9
=>bca chia hết cho 27
siêu nhân mà bài này chẳng làm được
Cho số abc chia hết cho 27.Chứng minh rằng bca chia hết cho 27
bca = 100b + 10c + a (1)
abc chia hết 27 <=> 100a + 10b + c chia hết 27 <=> 19a + 10b + c chia hết 27
=> c = 27k - 19a - 10b
Thay vào (1) => bca = 100b + 10(27k - 19a - 10b) + a = 270k - 189a = 27(10k - 7a) chia hết 27
cho số abc chia hết cho 27 chứng minh rằng số bca chia hết cho 27
1. Cho abc chia hết cho 27 .Chứng minh bca chia hết cho 27
2. Chứng tỏ số tạo bởi 27 chữ số 1 chia hết cho 27
1) abc chia hết cho 27
chứng tỏ:a+b+c chia hết cho 27
Nên bca cũng chia hết cho 27
2) 1 số tạo bới 27 chữ số 1 là: 11111..11( 27 chữ số 1) thì sẽ có tổng:
1+1+1+1+..+1+1 ( 27 số hạng)=27
-=> số tạo bỏi 27 chữ số 1 chia hết cho 27
Cho abc0 chia hết cho 27 , Chứng tỏ rằng bca chia hết cho 27
Giả sử abc chia hết cho 27 thì trước hết abc phải chia hết cho 9 => a+b+c chia hết cho 9
=> bca cũng chia hết cho 9 => bca = 9m (m € N)
ta có: abc = 27k với (k € N)
abc - bca = 27k - 9m
<=> (100a + 10b + c) - (100b + 10c + a) = 9(3k-m)
<=> 99a - 90b - 9c = 9(3k - m)
<=> 11a - 10b - c + m = 3k
<=> 21a - 10(a+b+c) + 9c + m = 3k
Vế phải chia hết cho 3 mà các số: 21a ; 10(a+b+c) và 9c đều chia hết cho 3
=> m cũng chia hết cho 3
=> m = 3n (n € N)
=> bca = 9m = 27n => bca chia hết cho 27 (đpcm)
Ta thấy: \(\overline{abc0}⋮27\Rightarrow\hept{\begin{cases}\overline{abc0}⋮3\\\overline{abc0}⋮9\end{cases}\Rightarrow\hept{\begin{cases}\left(a+b+c+0\right)⋮3\\\left(a+b+c+0\right)⋮9\end{cases}\Rightarrow}\hept{\begin{cases}\left(a+b+c\right)⋮3\\\left(a+b+c\right)⋮9\end{cases}\Rightarrow\left(a+b+c\right)⋮}27\Rightarrow\left(b+c+a\right)⋮27\Rightarrow bca⋮27\left(\text{ĐPCM}\right)}\)
Nếu bạn không hiểu chỗ nào thì nhắn tin cho mk để mk nói rõ hơn nha
Một số chia hết cho 27 thì chia hết cho 3 và 9 (Vì 3 x 9 = 27)
Mình chỉ cần áp dụng tính chất chia hết cho 3 và 9 thôi
HOKTOT