chứng minh
(x+1)2-2(x+1)+1,01>0 với mọi x
thank trước nha
chứng minh
x2-6x+10+y2> 0 với mọi giá trị x,y
thank trước nha
x2 - 6x + 10 + y2
= x2 - 6x + 9 + 1 + y2
= x2 - 2.x.3 + 32 + 1 + y2
= (x - 3)2 + 1 + y2
Ta có: (x - 3)2 + 1 \(\ge\)1 và y2 \(\ge\)0
=> (x - 3)2 + 1 + y2 \(\ge\)1 > 0 với mọi x, y (đpcm).
chứng minh
4x2-8x+5>0 với mọi x
thank trước nha
4x2 - 8x + 5 >0
(2x)2 - 2. 2x.2 + 22 +1
(2x-2)2+1
Vì ( 2x-2) \(\ge\)0 mọi giá trị x => ( 2x-2)+1>0 với mọi giá trị x
Vậy 4x2 - 8x + 5 > 0 với mọi giá trị của x
ta có 4x^2 - 8x + 5 = (2x)^2 - 2*2x *2 + 4 +1 = (2x - 2)^2 + 1
do (2x - 2)^2 >= 0 vs mọi x nên (2x - 2)^2 + 1 > 0 với mọi x
Chứng minh rằng đa thức -x2-1 không có nghiệm. Giups mình nha! Cảm ơn trước!
Cách này có đúng không các bạn:
Ta có : -x2< hoặc bằng 0 với mọi x
Suy ra: -x2-1< hoặc bằng -1 < 0 với mọi x. Do đó đa thức trên vô nghiệm.
Nếu đúng thì còn cách nào nữa không mọi người , giúp mình nhé mình sắp thi hk rùi! thanks you nhiều!
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
Đặt \(f\left(x\right)=-x^2-1=-\left(x^2+1\right)\)
Ta có \(x^2\ge0\)với mọi giá trị của x
=> \(x^2+1>0\)với mọi giá trị của x
=> \(-\left(x^2+1\right)< 0\)với mọi giá trị của x
Vậy \(f\left(x\right)=-x^2-1\)vô nghiệm (đpcm)
Cách bạn làm ở trên đúng.
ta có:\(-x^2\le0
\)
\(-1< 0\)
=}đa thức \(-x^2-1\)vô nghiệm
Chứng minh rằng:
a,x^2-6xy+9y+1>0 với mọi số thực x và y
b,-25x^2+5x-1<0 với mọi số thực x
\(a,x^2-6xy+9y^2+1=\left(x-3y\right)^2+1\ge1>0\\ b,-25x^2+5x-1=-\left(25x^2+2\cdot5\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(5x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\)
Chứng minh rằng với mọi x, ta có A = (x – 1)(x – 3) + 2 > 0 với mọi x.
\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)
chứng minh \(x-x^2-1< 0\) với mọi x
\(x-x^2-1=-\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}< 0\forall x\)
hằng đẳng thức 2= (x-1)2-1<0
GTLN của (x-1)2chỉ có thể là 0 nên với mọi x ta có x-x2-1<0
\(-x^2+x-1\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\forall x\)
Chứng minh rằng:
a)3x^2-x+1>0 với mọi xϵR
b)2x-4x^2-2<0 với mọi xϵR
CHỨNG MINH RẰNG:
a) x^2+xy+y^2+1>0 với mọi x,y
b)6x^2+5y^2+2x-4xy-10y+14>0 với mọi x,y
giải chi tiết giùm nha,nhớ giải thích rõ.Cảm ơn nhiều.
Giải:
a) \(x^2+xy+y^2+1\)
\(=x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
\(=\left(x^2+2.x.\dfrac{y}{2}+\left(\dfrac{y}{2}\right)^2\right)+\dfrac{3y^2}{4}+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\ge1>0;\forall x\)
Vậy ...
Hãy chứng minh
a) x^2 - 2x +2 > 0 với mọi x
b) x^2 - xy + y^2 > hoặc = 0 vs mọi x,y
c) x - x^2 - 1 <0 với mọi x