tim gtnn cua A=x^2-6x+|y-3|+7
1, tim GTLN cua A=13/(x+5)^2+7
2, tim GTNN cua B=|x+2017|+(y+3)^2+2017
3, cho a-1/2=b+3/4=c-5/6 va 5a-3b-4c=46. Tim a,b,c.
tim GTNN cua: 3*x^2+y^2-2*x*y-7
đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.
Vậy GTNN của A là -7.
bai 1:tim GTNN cua bieu thuc
A=x2+3x+7
B=(x-2)(x-5)(x2-7x-10)
bai 2:tim GTLN cua bieu thuc
A=11-10x-x2
B=[x-4](2-[x-4])
bai 3:tim x,y sao cho
A=2x2+9y2-6xy-6x-12y+2016 co GTNN
B=-x2+2xy-4y2+2x+10y-8 co GTLN
bai 4 :
a)cho x+y=3;x2+y2=5.tinh x3+y3
b)cho x-y=5;x2+y2=15.tinh x3-y3
tim GTNN cua x2-x+3
GTLN cua -x2+6x-8
Câu a :
Ta có :
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)
Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Câu b :
Ta có :
\(-x^2+6-8\)
\(=-x^2+6x-9+1\)
\(=-\left(x^2-6x+9\right)+1\)
\(=-\left(x-3\right)^2+1\)
Do :
\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)
Vâỵ GTNN của biểu thức \(=11\)
Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
có x^2-x+3=x^2-1/2*2*x+(1/2)^2+11/4=(x-1/2)^2+11/4
có (x-1/2)^2>hoặc =0suy ra(x-1/2)^2+11/4>hoặc=11/4
dấu =xảy ra khi x-1/2=0suy ra x=1/2
có -x^2+6x-8=-(x^2-6x+8)=-(x-3)^2+1
có-(x-3)^2>hoặc=0suy ra -(x-3)^2+1>hoặc=1
dấu = xảy ra khi x-3=0suy ra x=3
Tim GTNN cua bieu thuc
A=9x2+6x-7
\(A=9x^2+6x-7\)
\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)
\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)
Vậy GTNN của A là -8
A\(=9x^2+6x-7\)
\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)
\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)
\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)
Vì \(\left(x+\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)
Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)
tim gia tri cua x de bieu thuc co GTNN
a) 3x^2 - 6x - 1
b) ( x - 1)( x + 2 )( x + 3 )( x + 6 )
a) 3 x^2 - 6x - 1
= 3 ( x^2 - 2x - 1/3 )
= 3 ( x^2 - 2x + 1 - 4/3)
= 3 [ ( x- 1 )^2 - 4/3)
=3 ( x- 1 )^2 - 4
Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4
VẬy GTNN là 4 khi x- 1 = 0 => x = 1
b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )
= ( x - 1 )( x+ 6 )( x+ 2 )( x+ 3 )
= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )
Đặt x^2 + 5x = t ta có :
= ( t- 6 )( t+ 6 )
= t^2 - 36
Vì t^2 >=0 => t^2 -36 >= -36
VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5
Nhớ ****
tim gtnn cua A=7 / 10x -x^2 + 3
A= 7/ - (x2 - 10x +25) +28
A=7/ - (x - 5)2 +28
xét - (x - 5)2 +28 <= 28 dấu = xảy ra khi x - 5 = 0 <=> x=5 . suy ra MIN A = 7/28 = 1/4
Vậy gtnn của A = 1/4 khi x=5
Cho x+y=z=3;\(A=x^2+y^2+z^2;B=xy+yz+xz\) a) C/M:\(A\ge B\) b) tim GTNN cua A c)tim GTLN cua B d) timf GTNN cua A+B
a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)
Dấu "=" xay ra khi \(x=y=z\)
b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)
Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)
d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)
\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)
\(=\frac{2}{3}\left(x+y+z\right)^2=6\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))
a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx
<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )
<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0
<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )
Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z
=> ( * ) đúng
=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z
b. Xài Cauchy cho mới
( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9
<=> 3 ( x2 + y2 + z2 )\(\ge\)9
<=> x2 + y2 + z2\(\ge\)3
Dấu "=" xảy ra <=> x = y = z = 1
Vậy minA = 3 <=> x = y = z = 1
c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9
<=> xy + yz + zx\(\le\)3
Dấu "=" xảy ra <=> x = y = 1
Vậy maxB = 3 <=> x = y = 1
d. x + y + z = 3 . BP 2 vế ta được
x2 + y2 + z2 + 2( xy + yz + zx ) = 9
Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )
=> A + B \(\ge\)6
Dấu "=" xảy ra <=> x = y = z = 1
Vậy min A + B = 6 <=> x = y = z = 1
b) Cái này là bạn đang chứng minh dùng CBS mà ?
tim gtnn cua x^2+4y^2+6x+8y+1
x2+4y2+6x+8y+1
=x2+6x+9+4y2+8y+4-12
=(x+3)2+(2y+2)2-12
\(\Rightarrow\)(x+3)2+(2y+2)2\(\ge\)0 với mọi x,y.
\(\Rightarrow\)(x+3)2+(2y+2)2 \(\ge\)-12 với mọi x,y.
Vay GTNN la -12
Dấu "=" xảy ra khi x+3=0 \(\Rightarrow\)x=-3
2y+2=0\(\Rightarrow\)y=-1
Nhớ k nha .