Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Khánh Huyền
Xem chi tiết
nguyen van dung
Xem chi tiết
Lưu Văn Dũng
7 tháng 10 2015 lúc 20:21

đặt A=3x2+y2-2xy-7=(x2-2xy+y2)+2x2-7=(x-y)2+2x2-7.ta có (x-y)luôn lớn hơn hoặc bằng 0 (bằng 0 khi x bằng y) và 2x2 cũng lớn hơn hoặc bằng 0(bằng 0 khi x=0) nên (x-y)2+2x2 luôn lớn hơn hoặc bằng 0 (bằng 0 khi x=y=0) suy ra (x-y)2+2x2-7 luôn lớn hơn hoặc bằng -7(đẳng thức xảy ra khi x=y=0) nên GTNN của A là -7.  

Vậy GTNN của A là -7.

nguyen van duc
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
2 tháng 11 2017 lúc 18:56

Câu a :

Ta có :

\(x^2-x+3\)

\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)

Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)

Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)

Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)

Câu b :

Ta có :

\(-x^2+6-8\)

\(=-x^2+6x-9+1\)

\(=-\left(x^2-6x+9\right)+1\)

\(=-\left(x-3\right)^2+1\)

Do :

\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)

Vâỵ GTNN của biểu thức \(=11\)

Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)

Phùng Khánh Linh
2 tháng 11 2017 lúc 18:58

Phân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương phápPhân tích đa thức thành nhân tử bằng cách phối hợp nhiều phương pháp

Huy Quế Phan
2 tháng 11 2017 lúc 19:10

có x^2-x+3=x^2-1/2*2*x+(1/2)^2+11/4=(x-1/2)^2+11/4

có (x-1/2)^2>hoặc =0suy ra(x-1/2)^2+11/4>hoặc=11/4

dấu =xảy ra khi x-1/2=0suy ra x=1/2

có -x^2+6x-8=-(x^2-6x+8)=-(x-3)^2+1

có-(x-3)^2>hoặc=0suy ra -(x-3)^2+1>hoặc=1

dấu = xảy ra khi x-3=0suy ra x=3

Trịnh Công Mạnh Đồng
5 tháng 7 2018 lúc 21:32

\(A=9x^2+6x-7\)

\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)

\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)

Vậy GTNN của A là -8

Thi Duyen Dang
5 tháng 7 2018 lúc 22:29

A\(=9x^2+6x-7\)

\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)

\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)

\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)

\(\left(x+\dfrac{1}{3}\right)^2\ge0\)

\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)

Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)

Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)

Phi Hùng
Xem chi tiết
Trần Đức Thắng
5 tháng 8 2015 lúc 9:21

a) 3 x^2 - 6x - 1

= 3 ( x^2 - 2x - 1/3 )

= 3 ( x^2 - 2x + 1 - 4/3)

= 3 [ ( x- 1 )^2 - 4/3)

=3 ( x-  1 )^2 - 4 

Vì 3 ( x- 1 )^2 >=0 => 3 ( x- 1 )^2 - 4 >= 4 

VẬy GTNN là 4 khi x- 1 = 0 => x = 1 

b ) ( x- 1 )( x +2 )( x+ 3 )( x+6 )

= ( x - 1 )( x+ 6 )( x+  2 )( x+ 3 )

= ( x^2 + 5x - 6 ) . ( x^2 + 5x + 6 )

Đặt x^2 + 5x = t ta có :

  = ( t- 6 )( t+ 6 )

=  t^2 - 36

Vì t^2 >=0 => t^2 -36 >= -36 

VẬy GTNN là -36 khi x ^2 + 5x = 0 => x = 0 hoặc x = 5 

Nhớ **** 

nguyển văn hải
13 tháng 6 2017 lúc 20:27

x = 0 hoặc x = 5 

ủng hộ mk nha thanks

Trần Nhật Hạ
Xem chi tiết
Upin & Ipin
6 tháng 1 2019 lúc 11:39

A= 7/ - (x2 - 10x +25) +28

A=7/ - (x  -  5) +28

xét  - (x  -  5) +28  <= 28  dấu = xảy ra khi x - 5 = 0 <=> x=5  .  suy ra MIN A = 7/28 = 1/4 

Vậy gtnn của A = 1/4 khi x=5

Cô Gái Mùa Đông
Xem chi tiết
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:16

a) Áp dụng bđt AM-GM: \(+\hept{\begin{cases}x^2+y^2\ge2xy\\y^2+z^2\ge2yz\\z^2+x^2\ge2zx\end{cases}}\)\(\Rightarrow2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)

\(\Leftrightarrow x^2+y^2+z^2\ge xy+yz+zx\left(đpcm\right)\)

Dấu "=" xay ra khi \(x=y=z\)

b) Bổ đề; \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng : \(A=x^2+y^2+z^2\ge\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

c) Bổ đề: \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\)

Áp dụng: \(B\le\frac{3^2}{3}=3\). Dấu "=" xảy ra khi \(x=y=z=1\)

d) \(A+B=x^2+y^2+z^2+xy+yz+zx=\left(x+y+z\right)^2-\left(xy+yz+zx\right)\)

\(\ge\left(x+y+z\right)^2-\frac{\left(x+y+z\right)^2}{3}\)

\(=\frac{2}{3}\left(x+y+z\right)^2=6\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Khách vãng lai đã xóa
Khánh Ngọc
15 tháng 10 2020 lúc 19:39

Bài này tuy dễ nhưng hơi loằng ngoằng giữa các câu :))

a. Cách phổ thông : x2 + y2 + z2\(\ge\)xy + yz + zx

<=> 2 ( x2 + y2 + z2 )\(\ge\)2 ( xy + yz + zx )

<=> ( x2 - 2xy + y2 ) + ( y2 - 2yz + z2 ) + ( z2 - 2zx + x2 )\(\ge\)0

<=> ( x - y )2 + ( y - z )2 + ( z - x )2\(\ge\)0 ( * )

Vì ( x - y )2 \(\ge\)0 ; ( y - z )2 \(\ge\)0 ; ( z - x )2\(\ge\)0\(\forall\)x ; y ; z

=> ( * ) đúng 

=> A\(\ge\)B ; dấu "=" xảy ra <=> x = y = z

b. Xài Cauchy cho mới

( x2 + y2 + z2 ) ( 12 + 12 + 12 )\(\ge\)( x + y + z )2 = 32 = 9

<=> 3 ( x2 + y2 + z2 )\(\ge\)

<=> x2 + y2 + z2\(\ge\)3

Dấu "=" xảy ra <=> x = y = z = 1

Vậy minA = 3 <=> x = y = z = 1

c. Theo câu a và câu b ta có : 3 ( xy + yz + zx )\(\le\)( x + y + z )2 = 32 = 9

<=> xy + yz + zx\(\le\)3

Dấu "=" xảy ra <=> x = y = 1

Vậy maxB = 3 <=> x = y = 1

d. x + y + z = 3 . BP 2 vế ta được

x2 + y2 + z2 + 2( xy + yz + zx ) = 9

Hay A + 2B = 9 . Mà B\(\le\)3 ( câu b )

=> A + B \(\ge\)6

Dấu "=" xảy ra <=> x = y = z = 1

Vậy min A + B = 6 <=> x = y = z = 1

Khách vãng lai đã xóa
KCLH Kedokatoji
15 tháng 10 2020 lúc 19:41

b) Cái này là bạn đang chứng minh dùng CBS mà ?

Khách vãng lai đã xóa
Huy Pham
Xem chi tiết
thien ty tfboys
17 tháng 12 2016 lúc 18:15

x2+4y2+6x+8y+1

=x2+6x+9+4y2+8y+4-12

=(x+3)2+(2y+2)2-12

\(\Rightarrow\)(x+3)2+(2y+2)2\(\ge\)0 với mọi x,y.

\(\Rightarrow\)(x+3)2+(2y+2)2 \(\ge\)-12 với mọi x,y.

Vay GTNN la -12

Dấu "=" xảy ra khi x+3=0 \(\Rightarrow\)x=-3

                           2y+2=0\(\Rightarrow\)y=-1

Nhớ k nha .