Câu a :
Ta có :
\(x^2-x+3\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{11}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Do : \(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
Vậy GTNN của biểu thức trên \(=\dfrac{11}{4}\)
Dấu \(=\) xảy ra khi \(\left(x-\dfrac{1}{2}\right)^2=0\Rightarrow x=\dfrac{1}{2}\)
Câu b :
Ta có :
\(-x^2+6-8\)
\(=-x^2+6x-9+1\)
\(=-\left(x^2-6x+9\right)+1\)
\(=-\left(x-3\right)^2+1\)
Do :
\(\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\Rightarrow-\left(x-3\right)^2+1\le1\)
Vâỵ GTNN của biểu thức \(=11\)
Dấu \(=\) xảy ra khi \(\left(x-3\right)^2=0\Rightarrow x=3\)
có x^2-x+3=x^2-1/2*2*x+(1/2)^2+11/4=(x-1/2)^2+11/4
có (x-1/2)^2>hoặc =0suy ra(x-1/2)^2+11/4>hoặc=11/4
dấu =xảy ra khi x-1/2=0suy ra x=1/2
có -x^2+6x-8=-(x^2-6x+8)=-(x-3)^2+1
có-(x-3)^2>hoặc=0suy ra -(x-3)^2+1>hoặc=1
dấu = xảy ra khi x-3=0suy ra x=3