Tìm giá trị nhỏ nhất của biểu thức :
A=/x-2015/+/x-2016/
với giá trị nào của x thì biểu thức A= /x-2016/ + 2015 có giá trị nhỏ nhất ? tìm giá trị nhỏ nhất đó
Vì /x-2106/ >= 0
=> /x-2016/+2015 >= 2015
=> Min = 2015 <=> x = 2016
tìm giá trị nhỏ nhất của biểu thức A=|2014-x|+|2015-x|+|2016-x|
vì /2014-x/ lớn hơn hoặc bằng 0 tương tự với các số còn lại
để A có giá trị nhỏ nhất thì các số này nhỏ nhất mà nhỏ nhất thì x lớn nhất
vậy x=2014
=> A= 0+1+2=3
| 2014 - x | + | 2015 - x | + | 2016 - x |> | 2014 - x + 2015 - x + 2016 - x |
| 2014 - x + 2015 - x + 2016 - x | = | 2014 + 2015 + 2016 - x - x - x |
= | 6045 - 3x |
đề A có giá trị nhỏ nhất thì | 6045 - 3x | phải có giá trị nhỏ nhất
suy ra 6045 = 3x
6045 : 3 =x
2015 = x
thay x vào A
A = | 2014 - 2015 | + | 2015 - 2015 | + | 2016 - 2015 |
A = 1 + 0 + 1
A = 2
vậy min A = 2
khi x = 2015
Tìm giá trị nhỏ nhất của biểu thức: A= |y -5|+100
Tìm giá trị lớn nhất của biểu thức: B=2016-|x -2015|
Vì |y-5|>=0
=>A=|y-5|+100>=100
Dấu bằng xảy ra khi:|y-5|=0
y-5=0
y=5
Vậy A có giá trị nhỏ nhất là 100 khi y=5
Vì |x-2015|>=0
=>2016-|x-2015|<=2016
Dấu bằng xảy ra khi:|x-2015|=0
x-2015=0
x=2015
Vậy A có giá trị lớn nhất là 2016 khi x=2015
tìm giá trị nhỏ nhất của biểu thức P = |x-2015| + |x-2016| + |x-2017|
Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ (để cm BĐT này bạn có thể tìm trên mạng, rất nhiều)
$|x-2015|+|x-2017|=|x-2015|+|2017-x|\geq |x-2015+2017-x|=2$
$|x-2016|\geq 0$ theo tính chất trị tuyệt đối
$\Rightarrow P\geq 2+0=2$
Vậy $P_{\min}=2$. Giá trị này đạt được tại $(x-2015)(2017-x)\geq 0$ và $x-2016=0$
Hay $x=2016$
tìm giá trị nhỏ nhất của biểu thức sau : A = (x-2015)^2 + 2016
Tìm giá trị nhỏ nhất của biểu thức B =|x-2015|-|x-2016|+|x-2017|
hsg toán mà ko biết làm bài dễ như thế này à
\(B=\left(|x-2015|\right)+\left(|x-2017|\right)+\left(|x-2016|\right)\)
\(B=\left(|x-2015|\right)+\left(|2017-x|\right)+\left(|x-2016|\right)\)
\(>=|x-2015+2017-x|+|x-2016|>=2+0=2\)
Dâu = xảy ra khi và chỉ khi \(\left(x-2015\right).\left(2017-x\right)>=0vàx-2016=0\Leftrightarrow x=2016\)
Vậy min P=2 khi và chỉ khi x=2016
Tìm giá trị nhỏ nhất của biểu thức sau : |2014-x| + |2015-x| + |2016-x|
Đặt A = |2014-x|+|2015-x|+|2016-x| = |x-2014|+|2015-x|+|2016-x|
Ta có: \(\left|x-2014\right|+\left|2016-x\right|\ge\left|x-2014+2016-x\right|=2\)
MÀ \(\left|2015-x\right|\ge0\)
\(\Rightarrow A=\left|2014-x\right|+\left|2015-x\right|+\left|2016-x\right|\ge2+0=2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(2014-x\right)\left(x-2016\right)\ge0\\\left|2015-x\right|=0\end{cases}\Rightarrow\hept{\begin{cases}2014\le x\le2016\\x=2015\end{cases}\Rightarrow}x=2015}\)
Vậy GTNN của A = 2 khi x=2015
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Tìm giá trị nhỏ nhất của biểu thức
P=/x-2015/+/x-2016/+/x-2017/
nguyễn kim ngân xai rùi
M nhỏ nhất = 1 khi 2015< hoặc bằng x < hoặc bằng 2016