Cho hàm số \(y=f\left(x\right)=\left|\frac{3}{2}x-\frac{5}{2}\right|\)tính f(0)
Cho hàm số \(y=f\left(x\right)=\frac{2}{3}x\)
Tính \(f\left(-2\right);f\left(-1\right);f\left(0\right);f\left(\frac{1}{2}\right);f\left(1\right);f\left(2\right);f\left(3\right)\)
1) Cho hàm số y=f(x) sao cho với mỗi x, ta đều có \(f\left(x\right)-5.f\left(-2\right)=x^2\) Tính f(3)
2) Cho hàm số y=f(x) sao cho với mỗi x \(\ne\) 0, ta đều có : \(f\left(x\right)+f\left(\frac{1}{x}\right)+f\left(1\right)=6\) Tính f(-1)
3) Cho hàm số y=f(x) sao cho với mỗi x, ta đều có : \(f\left(x\right)+3.f\left(\frac{1}{x}\right)=x^2\)Tính f(2)
\(\text{1)}\)
\(\text{Thay }x=-2,\text{ ta có: }f\left(-2\right)-5f\left(-2\right)=\left(-2\right)^2\Rightarrow f\left(-2\right)=-1\)
\(\Rightarrow f\left(x\right)=x^2+5f\left(-2\right)=x^2-5\)
\(f\left(3\right)=3^2-5\)
\(\text{2)}\)
\(\text{Thay }x=1,\text{ ta có: }f\left(1\right)+f\left(1\right)+f\left(1\right)=6\Rightarrow f\left(1\right)=2\)
\(\text{Thay }x=-1,\text{ ta có: }f\left(-1\right)+f\left(-1\right)+2=6\Rightarrow f\left(-1\right)=2\)
\(\text{3)}\)
\(\text{Thay }x=2,\text{ ta có: }f\left(2\right)+3f\left(\frac{1}{2}\right)=2^2\text{ (1)}\)
\(\text{Thay }x=\frac{1}{2},\text{ ta có: }f\left(\frac{1}{2}\right)+3f\left(2\right)=\left(\frac{1}{2}\right)^2\text{ (2)}\)
\(\text{(1) - 3}\times\text{(2) }\Rightarrow f\left(2\right)+3f\left(\frac{1}{2}\right)-3f\left(\frac{1}{2}\right)-9f\left(2\right)=4-\frac{1}{4}\)
\(\Rightarrow-8f\left(2\right)=\frac{15}{4}\Rightarrow f\left(2\right)=-\frac{15}{32}\)
sai 1 chút chỗ cÂU 3
nhân vs 3 thì phải là 1/12
thay x bằng ? mik cũng ko bit làm lên vào đây tham khảo hihihihi
Cho hàm số y = f(x) = \(\frac{x}{x-1}\left(x\ne1\right)\)
a) Tính \(f\left(0\right);f\left(\frac{-2}{3}\right);f\left(\frac{3}{2}\right)\)
b) Tìm x biết \(f\left(x\right)=\frac{-3}{5}\)
Cho hàm số y = f(x) = \(\frac{x}{x-1}\left(x\ne1\right)\)
a) Tính \(f\left(0\right);f\left(\frac{-2}{3}\right);f\left(\frac{3}{2}\right)\)
b) Tìm x biết \(f\left(x\right)=\frac{-3}{5}\)
Cho hàm số y=f(x)= -4
Tính: f(0); f(1); f(-1); f(3); f(-3); f\(\left(\frac{1}{2}\right)\); f\(\left(-\frac{1}{2}\right)\); f\(\left(\frac{3}{2}\right)\); f\(\left(-\frac{3}{2}\right)\)
Cho hàm số y = f(x) xác định với mọi số thực x khác 0 và thỏa mãn \(f\left(x\right)+3.f\left(\frac{1}{2}\right)=x^2\). Tính f(2)
Cho hàm số \(Y=F\left(x\right)=\frac{1}{2}x^2-1\)
A) \(F\left(\frac{-1}{2}\right),F\left(0\right),F\left(-2\right),F\left(\frac{3}{4}\right)\)
B)Cho điểm \(A\left(4;7\right)\)\(B\left(-1;\frac{1}{2}\right)\).Hỏi điểm nào thuộc đồ thị của hàm số ? Vì sao ?
Cho hàm số \(y=f\left(x\right)=\frac{4^x}{4^x+2}\).Tính:
\(P=f\left(\frac{1}{2017}\right)+f\left(\frac{2}{2017}\right)+....+f\left(\frac{2016}{2017}\right)\)
Cho hai hàm số \(f\left( x \right) = 2{{\rm{x}}^3} - {x^2} + 3\) và \(g\left( x \right) = {x^3} + \frac{{{x^2}}}{2} - 5\). Bất phương trình \(f'\left( x \right) > g'\left( x \right)\) có tập nghiệm là
A. \(\left( { - \infty ;0} \right] \cup \left[ {1; + \infty } \right)\).
B. \(\left( {0;1} \right)\).
C. \(\left[ {0;1} \right]\).
D. \(\left( { - \infty ;0} \right) \cup \left( {1; + \infty } \right)\).
Ta có:
\(f'\left(x\right)=6x^2-2x\\ g'\left(x\right)=3x^2+x\)
Theo đề bài, ta có:
\(f'\left(x\right)>g'\left(x\right)\\ \Leftrightarrow6x^2-2x>3x^2+x\\ \Leftrightarrow3x^2-3x>0\\ \Leftrightarrow3x\left(x-1\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)
Vậy tập nghiệm của bất phương trình là \(\left(-\infty;0\right)\cup\left(1;+\infty\right)\)
Chọn D.