Chứng minh E là hợp số chia hết cho 3 . Biết :
E=1!+2!+3!+4!+.........+100!
Chứng minh rằng : 3 + 3^2 + 3^3 + 3^4 + ... +3^100 chia hết cho 120. (gợi ý : nhóm thành 25 nhóm mỗi nhóm có 4 số hạng )
cho E = 1/3 + 2/3^2 + 3/3 ^3 + 4/3^4 + ... +100/3^100. chứng minh rằng E <3/4
giúp mình 2 bài này nhé
\(E=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\)
\(3E=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)
\(3E-E=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}\right)\)
\(2E=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
\(6E=3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\)
\(6E-2E=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{98}}-\frac{100}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\right)\)
\(4E=3-\frac{100}{3^{99}}-\frac{1}{3^{99}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{300}{3^{100}}-\frac{3}{3^{100}}+\frac{100}{3^{100}}\)
\(4E=3-\frac{203}{3^{100}}< 3\)
\(\Rightarrow4E< 3\)
\(\Rightarrow E< \frac{3}{4}\left(đpcm\right)\)
Bài 1:
Ta có: \(3+3^2+3^3+...+3^{100}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{97}+3^{98}+3^{99}+3^{100}\right)\)
\(=120+3^5\left(3+3^2+3^3+3^4\right)+....+3^{96}\left(3+3^2+3^3+3^4\right)\)
\(=120+3^5.120+...+3^{96}.120\)
\(=120.\left(1+3^5+.....+3^{96}\right)\)
\(\Rightarrow3+3^2+3^3+3^4+....+3^{100}\)chia hết cho 120 (vì có chứa thừa số 120)
1. a, Cho B = 3 + 3^3 + 3^5 +...+ 3^1991. Chứng minh rằng: B chia hết cho 3 ; B chia hết cho 41
b, Chứng minh rằng: (99^5 - 98^4 - 97^3 - 96^3) chia hết cho 2, cho 5.
c, A = 999993^1999 - 555557^1997. Chứng minh: A chia hết cho 5.
d, A = 8n + 111..1 ( n chữ số 1 ). Chứng minh: A chia hết cho 9.
e, Cho ( abc + deg ) chia hết cho 37. Chứng minh: abcd chia hết chio 37.
2. Tìm 2 số biết rằng tổng của chúng gấp 7 lần hiệu của chúng, còn tích của chúng gấp 192 lần hiệu của chúng.
3. Tìm số nhỏ hơn 100, biết rằng khi chia số đó cho 5 thì được dư là 3, chia cho 11 dư 5.
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
1.Cho E=5+5 mũ 2+5 mũ 3+....+5 mũ 100. Tìm số dư khi chia E cho 6
2. Chứng tỏ rằng với mọi số tự nhiên n thì n(n+2)(n+7): 3( chia hết cho 3)
3. Tìm số nguyên tố nhỏ hơn 200 , biết rằng khi chia số đó cho 60 thì số dư là hợp số
Bài 1:
Giải :
Ta có: \(E=5+5^2+5^3+5^4+...+5^{97}+5^{98}+5^{99}+5^{100}\) \(\Leftrightarrow E=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{97}+5^{98}\right)+\left(5^{99}+5^{100}\right)\)
\(\Leftrightarrow E=5.\left(1+5\right)+5^3.\left(1+5\right)+...+5^{97}.\left(1+5\right)+5^{99}.\left(1+5\right)\)
\(\Leftrightarrow E=5.6+5^3.6+...+5^{97}.6+5^{99}.6\)
\(\Leftrightarrow E=6.\left(5+5^3+...+5^{97}+5^{99}\right)\)
\(\Rightarrow E⋮6\)
Do \(E⋮6\)nên \(E\div6\)dư 0
Vậy \(E\div6\)có số dư bằng \(0\)
Bài 2:
Giải :
Ta có: \(n.\left(n+2\right).\left(n+7\right)\)
\(=\left(n^2+2n\right).\left(n+7\right)\)
\(=n^3+2n^2+7n^2+14n\)
\(=n^3+9n^2+14n\)
\(=n.\left(n^2+9n+14\right)\)
cho c=5+5 mũ 2+ 5 mũ 3+....+5 mũ 20 chứng minh C chia hết cho 6, 13
cho E= 3+3^2+3^3+3^4+...+3^100
a) Tìm số tự nhiên n biết rằng 2E+3= 3^n
b) Chứng tỏ E chia hết cho 40
Câu 1 Hãy chứng minh rằng :
a) 2^12+1 chia hết cho 17
b) 3^9-8 chia hết cho 25
c) 173^n-73^n chia hết cho 100
Câu 2 Hãy chứng minh rằng
a) B.phương của 1 số lẻ trừ 1 chia hết cho 8
b) Hiệu b.phuơng của 2 số lẻ liên tiếp chia hết cho 8
Câu 3 Tìm n thuộc N để cho A= (n+3)^2-(n-4)^2có giá trị là số nguyên tố
GIÚP E SỚM CHIỀU MAI E NỘP !!
Thanks much
\(1;\)
\(a,2^{12}+1=\left(2^4\right)^3+1^3=\left(2^4+1\right)\left(2^8-2^4+1\right)=17.\left(2^8-2^4+1\right)⋮17\)
\(b,3^9-8=\left(3^3\right)^3-2^3=\left(27-2\right)\left(3^6+3^3.2+4\right)⋮25\)
\(c,173^n-73^n⋮\left(173-73\right)=100\)
Cho E=1 + 4 + 4 mũ 2 + 4 mũ 3 +....+4 mũ 58 + 4 mũ 59.Hãy chứng minh rằng E chia hết cho 5 và E chia hết cho 21
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4)+(4^2+4^3)+...+(4^58+4^59)A=(1+4)+(4^2+4^3)+...+(4^58+4^59)
A=(1+4)+4^2(1+4)+...+4^58(1+4)A=(1+4)+4^2(1+4)+...+4^58(1+4)
A=5+4^2.5+...+4^58.5A=5+4^2.5+...+4^58.5
A=5(1+4^2+...+4^48)A=5(1+4^2+...+4^58)
A=5(1+4^2+...+4^58) chia hết cho 5
vậy A chia hết cho 5
A=1+4+4^2+...+4^59A=1+4+4^2+...+4^59
A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)A=(1+4+4^2)+(4^3+4^4+4^5)+...+(4^57+4^58+4^59)
A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)A=(1+4+4^2)+4^3(1+4+4^2)+...+4^57(1+4+4^2)
A=21+4^3.21+...+4^57.21A=21+4^3.21+...+4^57.21
A=21(1+4^3+...+4^57)A=21(1+4^3+...+4^57)
A=21(1+4^3+...+4^57) chia hết cho 21
vậy A chia hết cho 21
mik làm xong rồi nhớ k cho mik nha mik cảm ơn
1 Cho D=1+4+42+.................+469
a) rút gọn
b)chứng minh 240-1 chia het cho 3
c) chứng minh D chia hết cho 5
d) chứng minh D không chia hết cho 21
2 cho E=1/2+1/22+1/23........................+1/22107
a ) rút gọn
b) chứng minh E không là số nguyên tố
c )D = 1 + 4 + 4^2 + 4^3 + ... + 4^69
D = ( 1 + 4 ) + ( 4^2 + 4^3 ) + ( 4^4 + 4^5 ) + ... + ( 4^68 + 4^69 )
D = 5 + 4^2( 1 + 4 ) + 4^4( 1 + 4 ) + ... + 4^68( 1 + 4 )
D = 5 + 4^2 . 5 + 4^4 . 5 + ... + 4^68 . 5
D = 5( 1 + 4^2 + 4^4 + ... + 4^68 )
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Chứng minh:
a) ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) 100 - ( 7 n + 3 ) 2 chia hết cho 7 với n là số tự nhiên.
a) Ta có: ( 3 n - 1 ) 2 - 4 = (3n - 1 - 2)(3n - 1 + 2) = 3(n - l)(3n + 1).
Do 3(n - 1)(3n + l) chia hết cho 3 với mọi số tự nhiên n, nên ( 3 n - 1 ) 2 - 4 chia hết cho 3 với mọi số tự nhiên n;
b) Ta có: 100 - ( 7 n + 3 ) 2 =(7 - 7n)(13 – 7n) = 7(1 - n)(13 -7n) chia hết cho 7 với n là số tự nhiên.