Tìm GTNN của: \(A=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Tìm GTNN của $\sqrt{-x^2+4x+12}$ - $\sqrt{-x^2+2x+3}$
Tìm GTNN của \(A=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Cho \(-1\le x\le3\) .Tìm GTNN của biểu thức:
\(A=\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Đk:\(-1\le x\le3\) (chính là cái bài cho kia)
Nếu \(x=0\) thì \(A=\sqrt{3}\) ta sẽ chứng minh nó là GTNN của \(A\)
Tức là ta cần chứng minh
\(\sqrt{-x^2+2x+3}+\sqrt{3}\le\sqrt{-x^2+4x+12}\)
Sau khi bình phương 2 vế rồi rút gọn ta cần chứng minh
\(\sqrt{-3\left(x^2+2x+3\right)}\le x+3\)
Từ khi \(x+3>0\), ta cần chứng minh
\(3\left(-x^2+2x+3\right)\le\left(x+3\right)^2\Leftrightarrow x^2\ge0\) (Đúng)
Vậy \(A_{Min}=\sqrt{3}\Leftrightarrow x=0\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
tìm GTNN của biểu thức
\(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\)
Ta có: \(\sqrt{x^2-2x+10}=\sqrt{x^2-2x+1+9}=\sqrt{\left(x-1\right)^2+9}\ge\sqrt{9}\ge3\)
\(\sqrt{x^2+4x+5}=\sqrt{x^2+4x+4+1}=\sqrt{\left(x+2\right)^2+1}\ge\sqrt{1}\ge1\)
\(\Rightarrow\) \(\sqrt{x^2-2x+10}+\sqrt{x^2+4x+5}\ge1+3\ge4\)
Vậy GTNN của biểu thức là 4
tìm GTNN : P = \(\sqrt{-x^2+4x+12}-\sqrt{-x^2+2x+3}\)
Bài 1. Tìm GTNN:
\(A=\sqrt{2x^2-4x+3}+3\)
\(B=\sqrt{X^2-8x+18}-12\)
\(C=\sqrt{x^2+y^2-2xy+2x+5}+2y^2-8y+2015\)
\(D=\sqrt{x^2-6x+2y^2+4y+11}+\sqrt{x^2+2x+3y^2+6y+4}\)
\(E=x-\sqrt{2005}\)
\(A=\sqrt{2x^2-4x+3}+3\)
Ta có: \(2x^2-4x+3\)
\(=2\left(x^2-2x+\frac{3}{2}\right)\)
\(=2\left(x^2-2.x.1+1^2+\frac{1}{2}\right)\)
\(=2[\left(x-1\right)^2+\frac{1}{2}]\)
\(=2\left(x-1\right)^2+1\ge1\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}\ge\sqrt{1}\)
\(\Rightarrow\sqrt{2\left(x-1\right)^2+1}+3\ge3+\sqrt{1}=4\)
\(\Rightarrow MinA=4\Leftrightarrow x=1\)
Tìm điều kiện có nghĩa:
1) \(\sqrt{2x^2}\)
2) \(\sqrt{-x}\)
3) \(\sqrt{-x^2-3}\)
4) \(\sqrt{x^2+2x+3}\)
5) \(\sqrt{-a^2+8a-16}\)
6) \(\sqrt[]{16x^2-25}\)
7) \(\sqrt{4x^2-49}\)
8) \(\sqrt{8-x^2}\)
9) \(\sqrt{x^2-12}\)
10) \(\sqrt{x^2+2x-3}\)
11) \(\sqrt{2x^2+5x+3}\)
12) \(\sqrt{\dfrac{4}{x-1}}\)
13) \(\sqrt{\dfrac{-1}{x-3}}\)
14) \(\sqrt{\dfrac{-3}{x+2}}\)
15) \(\sqrt{\dfrac{1}{2a-1}}\)
16) \(\sqrt{\dfrac{2}{3-2a}}\)
17) \(\sqrt{\dfrac{-1}{2a-5}}\)
18) \(\sqrt{\dfrac{-2}{3-5a}}\)
19) \(\sqrt{\dfrac{-a}{5}}\)
20) \(\dfrac{1}{\sqrt{-3a}}\)
1) \(ĐK:x\in R\)
2) \(ĐK:x< 0\)
3) \(ĐK:x\in\varnothing\)
4) \(=\sqrt{\left(x+1\right)^2+2}\)
\(ĐK:x\in R\)
5) \(=\sqrt{-\left(a-4\right)^2}\)
\(ĐK:x\in\varnothing\)
Bài 1 : Tìm GTNN của biểu thức : \(A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\)
Bài 2 : Tìm x biết :
a, \(\sqrt{x}< \sqrt{x+1}\)
b, \(\sqrt{x-1}>4\)
c, \(\sqrt{4x^2+4x+1}+\sqrt{2x-1}=0\)
Bài 3 Tìm x,y thuộc Z
a, \(x^2+4x-y=1\)
b, \(x^2-3xy+2y^2+6=0\)
1.Ta co:
\(\text{ }\sqrt{5x^2+10x+9}=\sqrt{5\left(x+1\right)^2+4}\ge2\)
\(\sqrt{2x^2+4x+3}=\sqrt{2\left(x+1\right)^2+1}\ge1\)
\(\Rightarrow A=\sqrt{5x^2+10x+9}+\sqrt{2x^2+4x+3}\ge2+1=3\)
Dau '=' xay ra khi \(x=-1\)
Vay \(A_{min}=3\)khi \(x=-1\)
2c.
\(DK:x\ge\frac{1}{2}\)
\(\Leftrightarrow\text{ }2x+1+\sqrt{2x-1}=0\)
\(\Leftrightarrow2x-1+\sqrt{2x-1}+2=0\)
\(\Leftrightarrow\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}=0\)
Ma \(\left(\sqrt{2x-1}+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Vay PT vo nghiem