tìm x,y,z thuộc N ,sao cho :\(x+\frac{1}{y+\frac{1}{z}}=\frac{10}{7}\)
Tìm x,y thuộc Z:
\(\frac{1}{x}-\frac{1}{y}=\frac{1}{x-y}\)( x,y thuộc N sao )
Tìm 3 số x,y,z thuộc N sao cho:
\(\frac{1}{x}\)+\(\frac{1}{x+y}\)+\(\frac{1}{x+y+z}\)= 1
tìm cặp số tự nhiên sao cho:
a, \(\frac{4}{x}-\frac{y}{3}=\frac{5}{6}\)( x, y thuộc N )
b, \(\frac{5}{x}-\frac{y}{3}=\frac{1}{6}\) ( x , y thuộc Z )
c, \(\frac{x}{6}_{ }-\frac{2}{y}=\frac{1}{30}\) ( x, y thuộc Z )
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
tìm các số nguyên x,y thỏa mãn
1/\(\frac{x}{5}+\frac{1}{10}=\frac{1}{y}\)
2/\(x+y=\frac{-7}{6};y+z=\frac{1}{4};z+x=\frac{1}{12}\)
với x,y thuộc Q
Biết \(\frac{x-y}{10}=\frac{z+y}{7}\) và \(\frac{x+y}{7}=\frac{y-z}{-8}\). Tìm x, y, z sao cho \(x-2y+z=36\)
Cho x,y,z thuộc N*.Biết \(\frac{1}{x}\)+\(\frac{1}{y}\)+\(\frac{1}{z}\)= 1. Tìm x,y,z.
x;y;z có vai trò tương đương nên giả sử: \(0< x\le y\le z\)
Khi đó ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{3}{x}\Rightarrow\frac{3}{x}\ge1\Rightarrow x\le3\). Do x;y;z thuộc N* nên:
x = 1 => không tìm được y,z thuộc N* - Loạix = 2: \(\Rightarrow\frac{2}{y}\ge\frac{1}{y}+\frac{1}{z}=\frac{1}{2}\Rightarrow x=2\le y\le4\). Nếu y = 2 thì không tìm được z. Nếu y = 3; z = 6. Nếu y = 4 thì z = 4.x = 3 => y = 3; z = 3Vậy có 3 bộ số thỏa mã đề bài là (2; 3; 6); (2 ; 4 ; 4) ; (3 ; 3 ; 3)
Đảo các bộ số này với x ; y; z ta có 10 nghiệm của PT.
Mấy bạn giúp mình làm 4 bài sau đây nha. Nếu bạn nào làm vừa nhanh vừa đúng mình sẽ tặng cho bạn đó 1 LIKE!!!
1. Tìm phân số có giá trị nhỏ nhất khác 0 sao cho khi chia phân số này cho mỗi phân số 9/10,15/22 ta được kết quả là các số nguyên.
2. Tính hợp lí:
\(A=\frac{1}{2}.\frac{1}{7}+\frac{1}{7}.\frac{1}{12}+\frac{1}{12}.\frac{1}{17}+...+\frac{1}{2002}.\frac{1}{2007}\)
3. Cho x,y thuộc tập hợp N sao và
\(A=\frac{x}{x+y}+\frac{y}{y+z}+\frac{z}{x+z}\)
Chứng minh 1<A<2
4. Tìm tập hợp các số nguyên x để:
\(\frac{3x}{5}:\frac{3x^2+6x}{10}\)có giá trị là số nguyên.
http://olm.vn/hỏi-đáp/question/584545.html chờ xí tui thấy cái tên rồi giải cho bài 2
2.
= 1/2.7 + 1/7.12 + 1/12.17 + ... + 1/2002.2007
= 1/2 - 1/7 + 1/7 - 1/12 + 1/12 - 1/17 + ... + 1/2002 - 1/2007
= 1/2 - 1/2007
= 2007/4014 - 2/4014
= 2005/4014
1.
Gọi phân số đó là: \(\frac{a}{b}\)(a,b thuộc N)
Theo bài ra ta có:
\(\frac{a}{b}:\frac{9}{10}=\frac{a}{b}.\frac{10}{9}=\frac{10a}{9b}\)
Để \(\frac{10a}{9b}\) nguyên thì a thuộc B(9) và b thuộc Ư(10) (1)
\(\frac{a}{b}:\frac{15}{22}=\frac{a}{b}.\frac{15}{22}=\frac{15a}{22b}\)
Để \(\frac{15a}{22b}\) nguyên thì a thuộc B(22) b thuộc Ư(15) (2)
\(\frac{a}{b}\) nhỏ nhất =>a nhỏ nhất và b lớn nhất (3)
Từ (1), (2) và (3) => a=BCNN(9;22) và b= ƯCLN(15;10)
=>a= 198 ; b= 5
Vậy phân số cần tìm là: \(\frac{198}{5}\)
2.
\(A=\frac{1}{2}.\frac{1}{7}+\frac{1}{7}.\frac{1}{12}+\frac{1}{12}.\frac{1}{17}+...+\frac{1}{2002}.\frac{1}{2007}\)
\(A=\frac{1}{2.7}+\frac{1}{7.12}+\frac{1}{12.17}+...+\frac{1}{2002.2007}\)
\(5A=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{12}+\frac{1}{12}-\frac{1}{17}+...+\frac{1}{2002}-\frac{1}{2007}\)
\(5A=\frac{1}{2}-\frac{1}{2007}\)
\(5A=\frac{2005}{4014}\)
\(A=\frac{2005}{4014}.\frac{1}{5}\)
\(A=\frac{401}{4014}\)
2 bài còn lại mk đang nghĩ
k mk nha
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
a) Tìm x và y biết: \(\frac{x^2+y^2}{10}=\frac{x^2-2y^2}{7}\) và \(x^4\) \(y^4\) = 81
b) Cho x; y; z; t thuộc N*. Chứng minh rằng: \(\frac{x}{x+y+z}=\frac{y}{x+y+t}=\frac{z}{y+z+t}=\frac{t}{x+z+t}\) có giá trị không phải số tự nhiên.