Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhocanime
Xem chi tiết
alibaba nguyễn
7 tháng 4 2017 lúc 14:34

Ta có:

\(\frac{1}{2a}+\frac{1}{3a}+\frac{1}{4a}=\frac{1}{b^2-2b}\)

\(\Leftrightarrow13b^2-26b-12a=0\)

\(\Leftrightarrow12\left(a+b\right)=13b^2-14b\)

\(\Leftrightarrow a+b=\frac{13b^2-14b}{12}\)

\(\Leftrightarrow a+b=b^2-b+\frac{b^2-2b}{12}=b^2-b+\frac{b\left(b-2\right)}{12}\)

Dễ thấy b phải là số chẵn (1)

để \(\frac{b\left(b-2\right)}{2.2.3}\) nguyên thì

\(\Rightarrow\orbr{\begin{cases}b⋮3\\b-2⋮3\end{cases}}\)(2)

Từ (1) và (2) \(\Rightarrow\orbr{\begin{cases}b=6k\\b-2=6k\end{cases}\left(k\ge1\right)}\)

Với \(b=6k\) thế vào ta được

\(a+b=\frac{13\left(6k\right)^2-14.\left(6k\right)}{12}=36k^2-7k\)

Dễ thấy hàm số \(f\left(k\right)=39k^2-7k\) là hàm đồng biết với \(k\ge1\)

Từ đây ta có a + b nhỏ nhất khi k nhơ nhất hay \(k=1\)

\(\Rightarrow\hept{\begin{cases}b=6\\a=26\\a+b=32\end{cases}}\)

Tương tự cho trường hợp \(b-2=6k\) sẽ tìm được GTNN của a + b

PS: Vì m thích làm sự đơn điệu của hàm số thôi. Nếu các b có cách khác thì cứ làm cho gọn nhé :)

Mạnh Lê
7 tháng 4 2017 lúc 22:54

\(\Rightarrow a=26\)\(b=6\)Còn cách làm thì giống như Bạn alibaba nguyễn đó bạn 

~ Chúc bạn học giỏi ~~~

Mai Anh Nguyen
Xem chi tiết
Nam Khánh 2k
Xem chi tiết
Nguyễn Ngọc Huy Toàn
25 tháng 2 2022 lúc 20:11

b.\(ĐK:x;y\in Z^+;x;y\ne0\)

\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{5}\)

\(\Leftrightarrow\dfrac{5}{x}+\dfrac{5}{y}=1\)

\(\Leftrightarrow\dfrac{5}{x}=1-\dfrac{5}{y}\)

\(\Leftrightarrow\dfrac{5}{x}=\dfrac{y-5}{y}\)

\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{y-5}\)

\(\Leftrightarrow x=\dfrac{5y}{y-5}\)

\(\Leftrightarrow x=5+\dfrac{25}{y-5}\) ( bạn chia \(5y\) cho \(y-5\) ý )

Để x;y là số nguyên dương thì \(25⋮y-5\) hay \(y-5\in U\left(25\right)=\left\{\pm1;\pm5;\pm25\right\}\)

TH1: 

\(y-5=1\) 

\(\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=30\end{matrix}\right.\) ( tm )   ( bạn thế y=6 vào \(x=5+\dfrac{25}{y+5}\) nhé )

Xét tương tự, ta ra được nghiệm nguyên dương của phương trình:

\(\left\{{}\begin{matrix}x=30\\y=6\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=10\\y=10\end{matrix}\right.\)  \(\left\{{}\begin{matrix}x=6\\y=30\end{matrix}\right.\)

Dương Nguyễn
Xem chi tiết
Đoàn Đức Hà
7 tháng 6 2021 lúc 10:17

\(a,b\)nguyên dương nên hiển nhiên \(a+b,a\times b\)nguyên dương. \(a-b\)nguyên dương khi \(a>b\).

\(a\times b,a\div b\)có giá trị khác nhau nên \(b\ne1\).

Với \(b=2\): xét các giá trị của \(a\)để \(a\div b\)nguyên dương. 

\(a=2\)\(a-b=0\)không thỏa mãn.

\(a=4\)\(a-b=a\div b=2\)không thỏa mãn.

 - \(a=6\): thỏa mãn. Khi đó \(a+b=8\).

Với \(b\ge3\)thì để thỏa mãn thì \(a\ge2b\)khi đó \(a+b\ge3b\ge9>8\).

Vậy giá trị nhỏ nhất của \(a+b\)là \(8\).

Khách vãng lai đã xóa
Alice Sophia
Xem chi tiết
alibaba nguyễn
17 tháng 6 2017 lúc 10:48

\(\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)

\(=\sqrt{a\left(a+b+c\right)+bc}+\sqrt{b\left(a+b+c\right)+ca}+\sqrt{c\left(a+b+c\right)+ab}\)

\(=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}\)

\(\le\frac{a+b+a+c}{2}+\frac{b+a+b+c}{2}+\frac{c+a+c+b}{2}\)

\(=2\left(a+b+c\right)=4\)

Dấu = xảy ra khi \(a=b=c=\frac{2}{3}\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 2 2019 lúc 14:04

Chọn D.

Phương pháp:

Giải phương trình hoành độ giao điểm, tìm giao điểm của hai đồ thị.

Dựa vào công thức trọng tâm, xác định m.

Cách giải:

Phương trình hoành độ giao điểm của d và (C) là

Để d cắt (C) tại hai điểm phân biệt A, B thì (*) có 2 nghiệm phân biệt khác 1

Nguyễn Minh Huy
Xem chi tiết
KCLH Kedokatoji
18 tháng 10 2020 lúc 19:08

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:

\(P=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)

Cộng thêm giả thiết abc=1, suy ra dấu "=" xảy ra khi \(a=b=c=1\)

Khách vãng lai đã xóa
Doan Tuan kiet
Xem chi tiết
Doan Tuan kiet
24 tháng 2 2022 lúc 19:54

giúp mik mik cần gấp

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2019 lúc 5:46

Áp dụng bất đẳng thức trên ta có  ( 1 + a 2 ) ( 1 + b 2 ) ≥ 1 + a b = 1 + a + b (1)

Với mọi x, y > 0, áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

1 x + 1 y ( x + y ) ≥ 2 1 x . 1 y .2 x y = 4 ⇒ 1 x + 1 y ≥ 4 x + y (2)

Áp dụng (1) và (2) ta có:

P ≥ 4 a 2 + 2 a + b 2 + 2 b + 1 + a + b = 4 a 2 + b 2 + 2 a b + 1 + a + b = 4 ( a + b ) 2 + a + b 8 + 7 ( a + b ) 8 + 1

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

a + b = a b ≤ ( a + b ) 2 4 ⇒ ( a + b ) 2 ≥ 4 ( a + b ) ⇒ a + b ≥ 4

Áp dụng bất đẳng thức Côsi cho 2 số dương ta có:

4 ( a + b ) 2 + a + b 16 + a + b 16 ≥ 3 4 ( a + b ) 2 . a + b 16 . a + b 16 3 = 3 4 ⇒ P ≥ 3 4 + 7 8 .4 + 1 = 21 4

Dấu bằng xảy ra khi a = b = 2. Vậy giá trị nhỏ nhất của P là 21/4