Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Nhã Linh
Xem chi tiết
Phan Nghĩa
5 tháng 8 2020 lúc 20:26

\(A=x^2+2x+2=x^2+2x+1+1\)

\(=\left(x+1\right)^2+1>0\)

\(B=x^2+x+1=x^2+x+\frac{1}{4}+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

tự làm tiếp đi chị

Khách vãng lai đã xóa
Nguyễn Thanh Xuân
Xem chi tiết
Lê Thanh Dương
Xem chi tiết
Nguyễn Kiên
14 tháng 6 2017 lúc 15:00

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Mike
25 tháng 6 2019 lúc 12:50

a : x2 + 4x + 7 = (x + 2)2 + 3 > 0

b : 4x2 - 4x + 5 = (2x - 1)2 + 4 > 0

c : x2 + 2y2 + 2xy - 2y + 3 = (x + y)2 + (y - 1)2 + 2 > 0

d : 2x2 - 4x + 10 = 2(x - 1)2 + 8 > 0

e : x2 + x + 1 = (x + 0,5)2 + 0,75 > 0

f : 2x2 - 6x + 5 = 2(x - 1,5)2 + 0,5 > 0

Lê Thị Vâng
Xem chi tiết
 ๖ۣۜFunny-Ngốkツ
20 tháng 8 2018 lúc 16:47

Ta có ;

\(2x^2-10x+27\)

\(=x^2-2x+1+x^2-8x+16+10\)

\(=\left(x-1\right)^2+\left(x-4\right)^2+10\)

Vì \(\left(x-1\right)^2\ge0\forall x\)và \(\left(x-4\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-1\right)^2+\left(x-4\right)^2+10\ge10\forall x\)

=> Biểu thức đã cho luôn dương .

( P.s : Bạn có thể tách theo kiểu khác ).

Kirigaya Kazuto
20 tháng 8 2018 lúc 16:52

\(2x^2-10x+27\)

\(=x^2+x^2-4x-6x+4+9+14\)

\(=\left(x^2-4x+4\right)+\left(x^2-6x+9\right)+14\)

\(=\left(x-2\right)^2+\left(x-3\right)^2+14\)

Vì \(\hept{\begin{cases}\left(x-2\right)^2\ge0\forall x\\\left(x-3\right)^2\ge0\forall x\end{cases}}\)

\(\Rightarrow\left(x-2\right)^2+\left(x-3\right)^2+14\ge14\forall x\)

=> Biểu thức luôn dương vớ mọi x .

Cường
Xem chi tiết
Minh harry
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 9 2021 lúc 10:36

\(A=\left(x^2-4xy+4y^2\right)+\left(x^2+10x+25\right)+\left(y^2-22y+121\right)+2\\ A=\left(x-2y\right)^2+\left(x+5\right)^2+\left(y-11\right)^2+2\ge2>0\)

Tranthihaiyen
Xem chi tiết
Nguyen Thao
Xem chi tiết
Nguyễn Nam
4 tháng 12 2017 lúc 21:35

a) \(x^2-x+1\)

\(=\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{3}{4}\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

b) \(x^2+2x+2\)

\(=\left(x^2+2x+1\right)+1\)

\(=\left(x+1\right)^2+1>0\forall x\)

c) \(-x^2+4x-5\)

\(=-x^2+4x-4-1\)

\(=-\left(x^2-4x+4\right)-1\)

\(=-\left(x-2\right)^2-1< 0\forall x\)

Nguyễn Nam
4 tháng 12 2017 lúc 21:43

1)

a) \(3x^3y^2-6x^2y^3+9x^2y^2\)

\(=3x^2y^2\left(x-2y+3\right)\)

b) \(5x^2y^3-25x^3y^4+10x^3y^3\)

\(=5x^2y^3\left(1-5xy+2x\right)\)

Lê Thanh Dương
Xem chi tiết