A = \(\frac{x}{x+1}\)-\(\frac{2}{x}\)+\(\frac{2}{x^2+x}\)(x\(\ne\)0; x\(\ne\)-1
Rút gọn A và tìm x để |A| = 1/2
Bài 1:Cho biểu thức :A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\) với x≠0;x≠1;x≠2;x≠-1
1,Rút gọn biểu thức A
2,Tính A biết x thỏa mãn x3-4x2+3x=0
Rút gọn:
a, A = \(\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\) (đk: x ≥ 0 và x ≠ 36)
b, B = \(\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\) (đk: x ≥ 0 và x ≠ 9)
c, C = \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}-\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\) (đk: a > 0, b > 0 và a ≠ b)
d, D = \(\left(\frac{2-a\sqrt{a}}{2-\sqrt{a}}+\sqrt{a}\right)\left(\frac{2-\sqrt{a}}{2-a}\right)\) (đk: a ≥ 0, a ≠ 2, a ≠ 4)
\(B=\frac{9-x}{\sqrt{x}+3}-\frac{x-6\sqrt{x}+9}{\sqrt{x}-3}-6\)(đk: x ≥ 0 và x ≠ 9)
\(B=\frac{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}{\sqrt{x}+3}-\frac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(B=\left(3-\sqrt{x}\right)-\left(\sqrt{x}-3\right)-6\)
\(B=3-\sqrt{x}-\sqrt{x}+3-6\)
\(B=-2\sqrt{x}\)
\(A=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}+\frac{x}{36-x}\)(đk: x ≥ 0 và x ≠ 36)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-6}-\frac{3}{\sqrt{x}+6}-\frac{x}{x-36}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+6\right)-3\left(\sqrt{x-6}\right)-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{x+6\sqrt{x}-3\sqrt{x}+18-x}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3\sqrt{x}+18}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3(\sqrt{x}+6)}{(\sqrt{x}-6)\left(\sqrt{x}+6\right)}\)
\(=\frac{3}{\sqrt{x}-6}\)
Cho biểu thức A=\(\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):x\) ≠0;x≠1;x≠2;x≠-1
a,Rút gọn biểu thức A
b,Tính A biết x thỏa mãn x3-4x2+3x=0
A= \(\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
(Với x≠1; x>0)
a) Rút gọn A
b) Chứng minh A>\(\frac{1}{2}\) với x>0; x≠1
Giúp tui nha
a, Ta có : \(A=\left(\frac{x-\sqrt{x}+2}{x-1}-\frac{1}{\sqrt{x}-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-\sqrt{x}+2-\left(\sqrt{x}+1\right)}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{x-2\sqrt{x}+1}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)^2}{x-1}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\left(\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\frac{x+2\sqrt{x}}{2x-2\sqrt{x}}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)}\frac{\left(x+2\sqrt{x}\right)}{\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\left(x+2\sqrt{x}\right)}{\left(\sqrt{x}+1\right)\left(2x-2\sqrt{x}\right)}\)
=> \(A=\frac{\left(\sqrt{x}-1\right)\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}\left(\sqrt{x}-1\right)}\)
=> \(A=\frac{\sqrt{x}+2}{2\sqrt{x}+2}\)
b, Ta có : \(A=\frac{\sqrt{x}+1+1}{2\left(\sqrt{x}+1\right)}=\frac{1}{2}+\frac{1}{2\left(\sqrt{x}+1\right)}\)
- Ta thấy : \(\sqrt{x}+1>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}>0\)
=> \(\frac{1}{2\left(\sqrt{x}+1\right)}+\frac{1}{2}>\frac{1}{2}\)
=> \(A>\frac{1}{2}\) ( đpcm )
rút gọn bt A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\) với x≥0, x≠4,x≠9
Điều kiện xác định của phương trình: \(\frac{5x-1}{4x+2}\)- \(\frac{x+3}{x-2}\)=0 là:
A. x\(\ne\)\(\frac{1}{2}\); x\(\ne\)2 B. x\(\ne\)-\(\frac{1}{2}\); x\(\ne\)2 C. x\(\ne\)\(\frac{1}{2}\); x\(\ne\)-2 D. x\(\ne\)\(\frac{1}{2}\); x\(\ne\)-2
Điều kiện xác định của phương trình: \(\frac{5x-1}{4x+2}-\frac{x+3}{x-2}=0\) là:
B: \(x\ne-\frac{1}{2};x\ne2\)
rút gọn biểu thức P =(\(\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)) với x >0; x≠1, x≠4
Rút gọn các biểu thức sau:
a) \(A = \frac{{{x^5}{y^{ - 2}}}}{{{x^3}y}}\,\,\,\left( {x,y \ne 0} \right);\) b) \(B = \frac{{{x^2}{y^{ - 3}}}}{{{{\left( {{x^{ - 1}}{y^4}} \right)}^{ - 3}}}}\,\,\,\left( {x,y \ne 0} \right).\)
a: \(A=\dfrac{x^5}{x^3}\cdot\dfrac{y^{-2}}{y}=x^2\cdot y^{-1}=\dfrac{x^2}{y}\)
b: \(B=\dfrac{x^2\cdot y^{-3}}{x^3\cdot y^{-12}}=\dfrac{x^2}{x^3}\cdot\dfrac{y^{-3}}{y^{-12}}=\dfrac{1}{x}\cdot y^{-3+12}=\dfrac{y^9}{x}\)
a) \(A=\dfrac{x^5y^{-2}}{x^3y}=\dfrac{x^5}{x^3}.\dfrac{1}{y^{2-1}}=x^{5-3}y^{-1}=x^2y^{-1}\).
b) \(B=\dfrac{x^2y^{-3}}{\left(x^{-1}y^4\right)^{-3}}=\dfrac{x^2y^{-3}}{x^3y^{-12}}=x^{2-3}y^{-3-\left(-12\right)}=\dfrac{1}{xy^9}\)
1. Cho biểu thức Q=\(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x-1\right)}}}{\sqrt{x^2-4\left(x-1\right)}}.\left(1-\frac{1}{x-1}\right)\)
a) Tìm ĐK của x để Q có nghĩa.
b) Rút gọn biểu thức Q.
2. Tìm giá trị lớn nhất của biểu thức: M=\(\frac{y\sqrt{x-1}+x\sqrt{y-4}}{xy}\)
3. CMR nếu \(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-xz\right)}\)
với x≠y, yz≠1, xz≠1, x≠0, y≠0, z≠0
thì \(x+y+z=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)