CMR
m^3-m chia hết cho 6 (mEN)
CMR m,n là số nguyên thì m^3+n^3 chia hết cho 6 khi m+n chia hết cho 6
1. n^3 + 11n chia hết cho 6
2. mn ( m^2 - n^2 ) chia hết cho 3
3. n ( n + 1 )( 2n + 1 ) chia hết cho 6
4. n^2 ( n^4 - 1) chia hết cho 60
5. mn ( m^4 - n^4 ) chia hết cho 30
Câu 1:
(Đk n € Z) Ta có :n^3+11n=n^3-n+12n=n(n^2-1)+12n=(n-1)n(n...
vì n là số nguyên nên (n-1)n(n+1) là tích của 3 số nguyên liên tiếp nên phải chia hết cho 6;mà 12 lại chia hết cho 6 =>12n cũng chia hết cho 6.
Vậy (n-1)n(n+1)+12n chia hết cho 6 => n^3+11n chia hết cho 6 (đpcm)
Câu 2: Gọi biểu thức trên là a ta có:
A=mn(m²-n²)
= mn(m² - 1 - n² + 1)
= mn [(m-1)(m+1) - (n-1)(n+1)]
= n(m-1)m(m+1) - m(n-1)n(n+1)
{n(m-1)m(m+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
{m(n-1)n(n+1) chia hết cho 3 (tính 3 số tự nhiên liên tiếp)
=> n(m-1)m(m+1) - m(n-1)n(n+1) chia hết cho 3
=> A chia hết cho 3
Câu 3:
n(n+1)(2n+1) = n(n+1)(n+2+n-1)=n(n+1)(n+2)+(n-1)(n+1)n
ba số liên tiếp thì chia hết cho 2 ; chia hết cho 3 --> tổng trên chia hết cho 6
Vậy n(n+1)(2n+1) chia hết cho 6
Câu 4: Gọi biểu thức trên là B ta có:
* B=n^2(n^4-1) = n^2(n^2+1)(n^2 - 1)
= n^2(n^2 - 4 + 5)(n^2 - 1) = n^2(n^2 - 1)(n^2 - 4) + n^2(n^2 - 1).5
= (n - 2)(n-1).n^2(n+1)(n+2) + n^2(n^2 - 1).5
(n - 2)(n-1).n^2(n+1)(n+2) chứa tích 5 số liên tiếp chia hết cho 5 và n^2(n^2 - 1).5 cũng chia hết cho 5
=> B chia hết cho 5
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) là tích 3 số tự nhiên liên tiếp chia hết cho 3
=> B chia hết cho 3
*B=n^2(n^4-1) = n^2(n^2+1)(n^2 -1) = n^2(n^2+1)(n+1)(n-1)
n chẵn => n^2 chia hết cho 4 => A(n) chia hết cho 4
n lẻ => n +1 và n -1 là 2 số chẵn => (n+1)(n-1) chia hết cho 4 => A(n) chia hết cho 4
=> B chia hết cho 4
Vì: 3,4,5 nguyên tố cùng nhau => Bchia hết cho 3.4.5 = 60
Câu 5: Gọi biểu thức trên là C ta có:
Đặt C = mn(m4-n4) = mn(m2-n2)(m2+n2)=mn(m-n)(m+n)(m2+n2)
*)Nếu 1 trong 2 số m,n chia hết cho 2 suy ra C chia hết cho 2.
Nếu k0 thì m,n lẻ suy ra m-n chia hết cho 2 suy ra C chia hết cho 2.
Vậy C chia hết cho 2
*)Nếu m,n có 1 số chia hết cho 3 => C chia hết cho 3.
Nếu k0: +)m,n đồng dư mod 3 => m-n chia hết cho 3 =>C chia hết cho 3
+)m,n chia 3 dư lần lượt là 1, 2 =>m+n chia hết cho 3 => C chia hết cho 3.
Vậy C chia hết cho 3.
*)Nếu m,n có 1 số chia hết cho 5 => C chia hết cho 5
Nếu k0 +)m,n đồng dư mod 5 =>m-n chia hết cho 5
+)m,n có số dư mod 5 là (1,2), (1,3), (1,4), (2,3), (2,4),(3,4)
Các trường hợp (1,4),(2,3) =>m+n chia hết cho5
Còn lại m2+n2 chai hết cho 5 (do 1 số chính phương chia 5 dư 0,1,4 nên bạn có thể tự thử các trường hợp còn lại)
Vậy C chia hết cho 5.
Từ kết quả trên => C chia hết cho 30( đpcm).
Cho m;n thuộc x. Chứng minh rằng
a)n mũ 3 -n chia hết cho 6
b)m mũ 3*n-m*n chia hết cho 6
c)n(n+1)(2n+1) chia hết cho 6
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Chứng minh rằng trong n số tự nhiên liên tiếp chỉ có 1 số chia hết cho n
n^5 + 19n chia hết cho 5a^3 - a +24 chia hết cho 6m^3 - m + 12 chia hết cho 6 a^3 - a + 12 * (a2 +1) chia hết cho 61, \(n^5+19n=n^5-n+20n=n\left(n^4-1\right)+20n\)
\(=n\left(n^2-1\right)\left(n^2+1\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4+5\right)+20n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2-4\right)+5n\left(n-1\right)\left(n+2\right)+20n\)
\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n\)
Vì (n-2)(n-1)n(n+1)(n+2) là hs 5 số tự nhiên liên tiếp nên \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮5\)
Mà \(5n\left(n-1\right)\left(n+1\right)⋮5;20n⋮5\)
\(\Rightarrow\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)+5n\left(n-1\right)\left(n+1\right)+20n⋮5\) hay \(n^5+19n⋮5\)
2/ \(a^3-a+24=a\left(a^2-1\right)+24=\left(a-1\right)a\left(a+1\right)+24\)
Vì (a-1)a(a+1) là tích 3 số liên tiếp nên (a-1)a(a+1) chia hết cho 2 và 3 => (a-1)a(a+1) chia hết cho 6
Mà 24 chia hết cho 6
=> (a-1)a(a+1)+24 chia hết cho 6 hay a^3-a+24 chia hết cho
3/ giống bài 2
4/ Vì a^3-a chia hết cho 6 (cm b2), 12(a^2+1) chia hết cho 6 => a^3-a+12(a^2+1) chia hết cho 6
CMR vs m,n là số nguyên thì m3+n3 chia hết cho 6 khi m+n chia hết cho 6
Giúp với mọi người ơi! Mai mình phải nộp rồi
Bài 1: Cho A= 2 . 4 . 6 . 8 . 10 . 12 + 40
a) C/m A chia hết cho 8 b) C/m A chia hết cho 5 c) C/m A chia hết cho 6
Bài 2: Tìm n thuộc N sao cho
a) n + 5 chia hết cho n b) 3n + 7 chia hết cho n
c) n + 7 chia hết cho n + 3 d) 3n + 9 chia hết cho n - 1
e) 5n + 3 chia hết cho 7 - 2n
Bài 3: Cho A= 3 + 3^3 + 3^5 + ... + 3^1992
a) C/m A chia hết cho 13
b) C/m A chia hết cho 40
Bài 1 :
a) Nếu a chia hết cho 3 và b chia hết cho 6 thì tổng a + b chia hết cho 3 ; 6 ; 9 .
b) Nếu a chia hết cho 12 và b chia hết cho 6 thì tổng a + b chia hết cho 2 ; 3 ; 6 ; 12 .
c) Nếu a chia hết cho 4 và b chia hết cho 6 thì tổng a + b chia hết cho 2 ; 3 ; 4.
Bài 2 :
Tìm x để A = 12 + 14 + 16 + x chia hết cho 2 , không chia hết cho 2 .
Bài 3 :
Cho tổng : A = 12 + 15 + 21 + x với x là số tự nhiên . Tìm điều kiện của x để :
a) A chia hết cho 3
b) A không chia hết cho 3
c) A chia hết cho 2
d) A không chia hết cho 2
Bài 2 :
A = 12 + 14 + 16 + x \(⋮\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) ( 12 + 14 + 16 ) \(⋮\) 2
\(\Rightarrow\) x \(⋮\) 2
x = 2k ( k \(\in\) N )
A = 12 + 14 + 16 + x \(⋮̸\) 2
mà 12 \(⋮\) 2
14 \(⋮\) 2
16 \(⋮\) 2
\(\Rightarrow\) x \(⋮̸\) 2
x = 2k + r ( k \(\in\) N , r \(\in\) N* )
Bài 3 : Cách làm tương tự như bài 2
C/m tích 3 stn liên tiếp chia hết cho 6
C/m tổng 3 stn liên tiếp chia hết cho 3
Đây là bài làm của mình. Sai sót gì mong bạn thông cảm.
a) Gọi 3 số tự nhiên liên tiếp là : a (a-1) (a+1)
Tích 3 STN liên tiếp luôn có một số chẵn và một số chia hết cho 3.
=> a ( a-1) (a +1) \(⋮\)2; 3
=> a (a-1) (a+1 ) \(⋮\)6
Vậy tích 3 STN liên tiếp chia hết cho 6 (lớp 8 có bài này).
b) Gọi tổng 3 sô tự nhiên liên tiếp là b + (b +1) + (b +2)
= b + b + 1 + b +2
= 3b + 3
Vì 3b \(⋮\)3 => 3b + 3 \(⋮\)3
Do đó b + (b+1) + (b+2) chia hết cho 3.
Vậy tổng 3 STN liên tiếp chia hết cho 3.