cho tam giac abc có ab=6cm,bc=8,ac=7cm.vẽ phân giác bk
tính ak,kc
cho tam giac ABC AB 16 AC 24. đường phân giác AD điểm E thuộc AD sao cho gọi K là giao điểm của BE và AC tính AK, KC
Áp dụng định lý phân giác:
⇔5BD=2BC⇒BD=25BC⇒BDBC=25⇔5BD=2BC⇒BD=25BC⇒BDBC=25
FDAK=FEKE=DEAE=23FDAK=FEKE=DEAE=23
Talet cho tam giác BCK: ⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53
cho tam giac ABC vuông tại A. vẽ đường cao AH.Trên cạnh BC lấy điểm D sao cho BD bằng BA.
a CM rằng tia AD là phân giác của góc HAC
b vẽ DK vông góc AC.CM AK bằng AH
c CM rằng AB cộng AC bé hơn BC cộng AH gợi ý AC bằng AK cộng KC bằng AH cộng KC
Bạn tự vẽ hình
a/Xét tam giác ABD có AB=BD(gt)
=>Tam giác ABD cân tại B (dấu hiệu nhận biết tam giác cân)
=>góc BAD= góc BDA hay góc BAD= góc HDA(1)
Vì tam giác ABC vuông tại A nên góc BAC = 90độ
Mà góc BAC=góc BAD+ góc DAC
Nên góc BAD+góc DAC =90độ(2)
Xét tam giác AHD vuông tại H( Vì AH là đường cao)
=>góc HAD +góc HDA=90 độ (trong tam giác vuông, hai góc nhọn phụ nhau) (3)
Từ (1),(2) và (3) suy ra góc HAD= góc DAC
=>AD là tia phân giác của góc HAC
b/Ta có AH vuông góc vớiBC (vì AH là đường cao)
=>góc AHC=90 độ
=> tam giác AHD vuông tại H
Vì DK vuông góc với AC (gt)
=>góc DKA=90độ
=>tam giác AKD vuông tại K
Xét tam giác AHD vuông tại H và tam giác AKD vuông tại K có
cạnh huyền AD chung và góc HAD =góc KAD (Vì AD là phân giác của góc HAC)
=>tam giác AHD = tam giác AKD (ch.gn)
=>AH=AK( 2 cạnh tương ứng)
c/ Xét tam giác DKC vuông tại K( vì DK vuông góc với AC)
=> góc DKC là góc lớn nhất trong tam giácDKC
mà cạnh DC đối diện với góc DKC
=>DC là cạnh lớn nhất trong tam giác DKC
=>DC>KC
=>DC+BD>KC+BD( cộng cả 2 vế với BD)
=>BC>KC+BD(Vì điểm D thuộc BC)
=>BC+AK>AK+KC+BD (cộng cả 2 vế với AK)
=>BC+AK>AC+BD( VÌ K nằm giữa A và C)
=>BC+AH>AC+AB (Vì AK= AH, BD=AB)
Vậy AB+AC<BC+AH
cho tam giác ABC (AB<AC) góc B=60 hai phân giác AD và CE của tam giac ABC cắt nhau ở I từ trung điểm M của Bc kẻ đường vuông góc với đường phân giác AI taị H cắt AB ở P cắt AC ở K
a/ tính góc AIC
b/ tính độ dài cạnh AK biết AK=6cm AH=4cm
c/ cm tam giác IDE cân
cho tam giác ABC (AB<AC) góc B=60 hai phân giác AD và CE của tam giac ABC cắt nhau ở I từ trung điểm M của Bc kẻ đường vuông góc với đường phân giác AI taị H cắt AB ở P cắt AC ở K
a/ tính góc AIC
b/ tính độ dài cạnh AK biết AK=6cm AH=4cm
c/ cm tam giác IDE cân
cho tam giac abc vuông tại a, AB 3cm bc 5 cm so sánh góc b và c
Cho tam giác ABC có AB=6cm, AC=8cm, tia phân giác góc A cắt BC tại D. CMR: góc ADB<góc ADC.
Cho tam giác ABC cân tại A có chu vi = 20cm.Cạnh y của BC=6cm. So sánh các góc của ABC?
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
cho tam giac ABC vuông Tại A. Đường Phân Giac BD(Dthuộc AC) . Kẻ DH vuông góc Với BC (H thuộc BC ). gọi K là Giao Điểm Của AB và DH
a) Chứng Minh : AD=HD
b) Chứng Minh : tam giác DKC cÂN
c) Chứng Minh : AH song song KC
d) Chứng Minh : 2(AD+AK)>KC
cho tam giác ABC vuông tại A có AB=6cm, AC=8cm. vẽ đường cao AH và phân giác BD
a, chứng minh AB2=BH.BC
b, vẽ phân giác AK của góc A (Kϵ BC). tính BK,KC
c, gọi I là giao điểm của AH và BD , chứng minh AB.BI=BD.HB
c, tính diện tích tam giác ABH
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
cho tam giac ABC;AB=16;AC=24. đường phân giác AD điểm E thuộc AD sao cho gọi K là giao điểm của BE và AC tính AK, KC