Hãy tính 1/a -1/b và so sánh 1/a.b với 1/a-1/b. Biết b=a+1.
hãy tính 1/a -1/b và so sánh 1/a*b và 1/a -1/b biết b = a + 1
so sánh;
1/a.b và 1/a-1/b với b=1+a
mọi người ơi giúp mình với nhóa
ta có: \(\frac{1}{a.b}=\frac{1}{a.\left(1+a\right)}=\frac{1}{a}-\frac{1}{1+a}\) ( b = 1 + a)
\(\Rightarrow\frac{1}{a.b}=\frac{1}{a}-\frac{1}{b}\left(=\frac{1}{a}-\frac{1}{1+a}\right)\)
hãy tính 1/b-1/b và so sánh 1/a*b với 1/a-1/b
Tính
1 / A - 1 / B và so sánh 1 / A x B VỚI 1 / A - 1 / B biết B = A + 1
Ta có: \(\frac{1}{A}-\frac{1}{B}=\frac{B}{AB}-\frac{A}{AB}=\frac{B-A}{AB}\)
Mà \(B=A+1\Rightarrow B-A=1\)
Như vậy : \(\frac{1}{A}-\frac{1}{B}=\frac{1}{AB}\)
Đề ôn tập HK 2 - Đề 8
Bài 1:
a) Biết -3a - 1 > -3b - 1. So sánh a và b?
b) Biết 4a + 3 < 4b + 3. So sánh a và b?
Bài 2: Biết a < b, hãy so sánh:
a) 3a - 7 và 3b - 7. b) 5 - 2a và 3 - 2b
c) 2a + 3 và 2b + 3. d) 3a - 4 và 3b - 3
Bài 3: a) Chứng minh pt: x² + 6x + 11 = 0 vô nghiệm
b) Chứng minh bất pt: 5x² + 16 ≥ 0 có vô số nghiệm.
1.
a. -3a - 1 + 1 > -3b - 1 + 1 (cộng cả 2 vế cho 1)
-3a . \(\left(\dfrac{-1}{3}\right)\) < -3b . \(\left(\dfrac{-1}{3}\right)\) (nhân cả vế cho \(\dfrac{-1}{3}\) )
a < b
b. 4a + 3 + (- 3) < 4b + 3 +(- 3) (cộng cả 2 vế cho -3)
4a . \(\dfrac{1}{4}\) < 4b . \(\dfrac{1}{4}\) (nhân cả 2 vế cho \(\dfrac{1}{4}\) )
a < b
2.
a. Ta có: a < b
3a < 3b ( nhân cả 2 vế cho 3)
3a - 7 < 3b - 7 (cộng cả 2 vế cho - 7 )
b. Ta có: a < b
-2a > -2b (nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b ( cộng cẩ 2 vế cho 5)
c. Ta có: a < b
2a < 2b (nhân cả vế cho 2)
2a + 3 < 2b + 3 (cộng cả 2 vế cho 3)
d. Ta có: a < b
3a < 3b (nhân cả 2 vế cho 3)
3a - 4 < 3b - 4 (cộng cả 2 vế cho -4)
Ta có: 3 < 4
đến đây ko bắt cầu qua đc chắc đề bài sai
Không tính ra đáp án cụ thể hãy so sánh A và B, biết rằng:
a) A = 1+2+3+....+ 1000, B = 1.2.3....11
b) A = 1.2.3. ... .20, B = 1+ 2 + 3 + ... + 1 000 000
a ) so sánh c và d biết :
C = \(\dfrac{1957}{2007}\) với D = \(\dfrac{1935}{1985}\)
b )hãy so sánh A và B
cho A = \(\dfrac{2016^{2016}+2}{2016^{2016}-1}\) và B = \(\dfrac{2016^{2016}}{2016^{2016}-3}\)
c ) so sánh M và N biết :
M = \(\dfrac{10^{2018}+1}{10^{2019}+1}\) ; N = \(\dfrac{10^{2019}+1}{10^{2020}+1}\)
Giải:
a)Ta có:
C=1957/2007=1957+50-50/2007
=2007-50/2007
=2007/2007-50/2007
=1-50/2007
D=1935/1985=1935+50-50/1985
=1985-50/1985
=1985/1985-50/1985
=1-50/1985
Vì 50/2007<50/1985 nên -50/2007>-50/1985
⇒C>D
b)Ta có:
A=20162016+2/20162016-1
A=20162016-1+3/20162016-1
A=20162016-1/20162016-1+3/20162016-1
A=1+3/20162016-1
Tương tự: B=20162016/20162016-3
B=1+3/20162016-3
Vì 20162016-1>20162016-3 nên 3/20162016-1<3/20162016-3
⇒A<B
Chúc bạn học tốt!
Làm tiếp:
c)Ta có:
M=102018+1/102019+1
10M=10.(102018+1)/202019+1
10M=102019+10/102019+1
10M=102019+1+9/102019+1
10M=102019+1/102019+1 + 9/102019+1
10M=1+9/102019+1
Tương tự:
N=102019+1/102020+1
10N=1+9/102020+1
Vì 9/102019+1>9/102020+1 nên 10M>10N
⇒M>N
Chúc bạn học tốt!
tinh 1/a -1/b va so sanh 1/ a.b với 1/a -1/b biết b = a+1
Ta có : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}\)
Mà a,b là 2 số tự nhiên liên tiếp vì b = a + 1
Nên : \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a}-\frac{1}{a+1}=\frac{1}{a.\left(a+1\right)}=\frac{1}{a.b}\)
Cho A= 102020 +1/ 102021+1 và B= 102021+1/ 102022+1. Không tính kết quả, hãy so sánh A và B.
\(10A=\dfrac{10^{2021}+10}{10^{2021}+1}=\dfrac{\left(10^{2021}+1\right)+9}{10^{2021}+1}=\dfrac{10^{2021}+1}{10^{2021}+1}+\dfrac{9}{10^{2021}+1}=1+\dfrac{9}{10^{2021}+1}\)
\(10B=\dfrac{10^{2022}+10}{10^{2022}+1}=\dfrac{\left(10^{2022}+1\right)+9}{10^{2022}+1}=\dfrac{10^{2022}+1}{10^{2022}+1}+\dfrac{9}{10^{2022}+1}=1+\dfrac{9}{10^{2022}+1}\)
Vì \(10^{2022}>10^{2021}=>10^{2021}+1< 10^{2022}+1\)
\(=>\dfrac{9}{10^{2021}+1}>\dfrac{9}{10^{2022}+1}\)
\(=>10A>10B\)
\(=>A>B\)