Cho x + y = 0. Giá trị của biểu thức 1 – 3xy(x+y) + 2x 3 y + 2x 2 y 2 – 5
Cho x+y=0.Tính giá trị của biểu thức 3xy(x+y)+2x3y+2x2y2+5
Ta biến đổi biểu thức trên thành 3xy(x+y)+2x^2y(x+y) +5
vì để bài cho x+y=0 => thay vào ta được 3xy.0+2x^2y.0+5=5
Vậy giá trị của biểu thức trên bằng 5
Ta biến đổi biểu thức :
3xy(x+y)+2x3y+2x2y2+5
= 3xy(x+y)+(2x3y+2x2y2)+5
= 3xy(x+y)+2x2y(x+y)+5
Khi đó với x+y=0 ta được :
3xy.0+2x2y.0+5 = 0+0+5 = 5
Vậy giá trị của biểu thức = 5 khi x+y=0
Rút gọn cái biểu thức sau r tính giá trị biểu thức F=-(2x-y) ^3-x(2x-y)^2-y^3 tại (x-2)^2 +y^2=0 G=(x+y) (x^2-xy+y^2) +3(2x-y) (4x^2+2xy+y^2) tại x+y=2;y=-3 H=(X+3y) (x^2-3xy+9y^2) +(3x-y) (9x^2+3xy+y^2) tại 3x-y=5;x=2
a: \(F=-\left(2x-y\right)^3-x\left(2x-y\right)^2-y^3\)
\(=-\left(2x-y\right)^2\cdot\left[2x-y+x\right]-y^3\)
\(=-\left(2x-y\right)^2\cdot\left(3x-y\right)-y^3\)
\(=\left(-4x^2+4xy-y^2\right)\left(3x-y\right)-y^3\)
\(=-12x^3+4x^2y+12x^2y-4xy^2-3xy^2+y^3-y^3\)
\(=-12x^3+16x^2y-7xy^2\)
\(\left(x-2\right)^2+y^2=0\)
mà \(\left(x-2\right)^2+y^2>=0\forall x,y\)
nên dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x-2=0\\y=0\end{matrix}\right.\)
=>x=2 và y=0
Thay x=2 và y=0 vào F, ta được:
\(F=-12\cdot2^3+16\cdot2^2\cdot0-7\cdot2\cdot0^2\)
\(=-12\cdot2^3\)
\(=-12\cdot8=-96\)
b: \(G=\left(x+y\right)\left(x^2-xy+y^2\right)+3\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(=x^3+y^3+3\left(2x-y\right)\left[\left(2x\right)^2+2x\cdot y+y^2\right]\)
\(=x^3+y^3+3\left(8x^3-y^3\right)\)
\(=x^3+y^3+24x^3-3y^3\)
\(=25x^3-2y^3\)
Ta có: \(\left\{{}\begin{matrix}x+y=2\\y=-3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=-3\\x=2-y=2-\left(-3\right)=2+3=5\end{matrix}\right.\)
Thay x=5 và y=-3 vào G, ta được:
\(G=25\cdot5^3-2\cdot\left(-3\right)^3\)
\(=25\cdot125-2\cdot\left(-27\right)\)
\(=3125+54=3179\)
c: \(H=\left(x+3y\right)\left(x^2-3xy+9y^2\right)+\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=\left(x+3y\right)\left[x^2-x\cdot3y+\left(3y\right)^2\right]+\left(3x-y\right)\left[\left(3x\right)^2+3x\cdot y+y^2\right]\)
\(=x^3+27y^3+27x^3-y^3\)
\(=28x^3-26y^3\)
Ta có: \(\left\{{}\begin{matrix}3x-y=5\\x=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=2\\y=3x-5=3\cdot2-5=1\end{matrix}\right.\)
Thay x=2 và y=1 vào H, ta được:
\(H=28\cdot2^3-26\cdot1^3\)
\(=28\cdot8-26\)
=198
Cho x+y=5. Tính giá trị của biểu thức:
A=x^3 + y^3 - 2x^2 - 2y^2 + 3xy(x + y) - 4xy + 3(x + y) + 10
\(A=x^3+y^3-2x^2-2y^2+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x^3+y^3\right)-2\left(x^2+y^2\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(\left(x+y\right)^2-2xy\right)+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(x+y\right)^3-3xy\left(x+y\right)-2\left(x+y\right)^2+4xy+3xy\left(x+y\right)-4xy+3\left(x+y\right)+10\)
\(A=\left(5\right)^3-3xy\left(5\right)-2\left(5\right)^2+4xy+3xy\left(5\right)-4xy+3\left(5\right)+10\)
\(A=125-15xy-50+4xy+15xy-4xy+15+10\)
\(A=100\)
Cho x+y = 0. Tính giá trị của biểu thức 3xy(x+y)+2x³ y+ 2x² y² +5
Tính giá trị biểu thức
A=\(2x+2y+3xy\left(x+y\right)+5\left(x^3y_{ }^2+x^2y^3\right)\)
tại x+y=0
B=\(3xy\left(x+y\right)+2x^3y+2x^2y^2\)
tại x+y=0
a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)
b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)
\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)
Thay x+y=0 vào A
\(\Rightarrow\)A=0
1.Cho x-y=7.Tính giá trị của các biểu thức:
a,M=x mũ 3 - 3xy(x-y) - y mũ 3 - x mũ 2 + 2xy - y mũ 2
b,N=x mũ 2(x+1) - y mũ 2(y-1) + xy - 3xy(x-y+1) - 95
2.Cho x+y=5.Tính giá trị các biểu thức:
a,P=3x mũ 2 - 2x + 3y mũ 2 - 2y + 6xy - 100
b,Q=x mũ 3 + y mũ 3 - 2x mũ 2 - 2y mũ 2 + 3xy(x+y) - 4xy + 3(x+y) + 10
Các bn giúp mk vs đây là btvn của mk
B1 : a, M = x3-3xy(x-y)-y3-x2+2xy-y2
= ( x3-y3)-3xy(x-y) -(x2-2xy+y2)
= (x-y)(x2+xy+y2)-3xy(x-y)-(x-y)2
= (x-y) [(x2+xy+y2-3xy-(x-y)]
= (x-y)[(x2-2xy+y2)-(x-y)
= (x-y)[(x-y)2-(x-y)]
= (x-y)(x-y)(x-y-1)
= (x-y)2(x-y-1)
= 72(7-1) = 49 . 6= 294
N = x2(x+1)-y2(y-1)+xy-3xy(x-y+1)-95
= x3+x2-(y3-y2)+xy-(3x2y-3xy2+3xy)-95
= x3+x2-y3+y2+xy-3x2y+3xy2-3xy-95
= (x3-y3)+(x2-2xy+y2)-(3x2y+y2)-(3x2y-3xy2)-95
=(x-y)(x2+xy+y2)+(x-y)2-3xy(x-y)-95
= (x-y)(x2+xy+y2+x-y-3xy)-95
= (x-y)[(x2-2xy+y2)+(x-y)]-95
= (x-y)[(x-y)2+(x-y)]-95
=(x-y)(x-y)(x-y+1)-95
= (x-y)2(x-y+1)-95
= 72(7+1)-95=297
tính giá trị của các biểu thức sau
A= a^2(a^2=b^2)(a^4=b^4)9a^8+b^8)(a^2-3b) phần (a^10+b^10) tại a=6; b=12
B=3xy(x+y)+2x^3 y+2x^2 y^2 +5 tại x+y=0
C= 2x+2y+3xy (x+y)+3(x^3 y^2+x^2 y^3) +4 tại x+y=0
NẾU GIẢI ĐƯỢC THÌ CẢM ƠN NHIỀU!!!!!!!!!!!!!!!!
10.[VDC]cho x+y=0. Tính giá trọ biểu thức 3xy(x+y)+2x^3y+2x^2y^2+5 A.3 B.1 C.4 D.5
Bài 1: Tính giá trị các biểu thức sau tại: |x| = \(\dfrac {1}{3}\); |y| = 1
a) A= 2x2 - 3x + 5 b) B= 2x2 - 3xy + y2
Bài 2: Tính giá trị các biểu thức A sau biết x + y +1 = 0:
A= x (x + y) - y2 (x + y) + x2 - y2 + 2 (x + y) + 3
Bài 3: Cho x.y.z = 2 và x + y + z = 0. Tính giá trị biểu thức:
A= (x + y)(y + z)(z + x)
Bài 4: Tìm các giá trị của các biến để các biểu thức sau có giá trị bằng 0:
a) |2x - \(\dfrac {1}{3}\)| - \(\dfrac {1}{3}\) b) |2x - \(\dfrac {1}{3}
\)| - \(\dfrac {1}{3}\) c) |3x + 2\(\dfrac {1}{3}
\)| + |y + 2| = 0 d) (x - 2)2 + (2x - y + 1)2 = 0
Bài 1:
|\(x\)| = 1 ⇒ \(x\) \(\in\) {-\(\dfrac{1}{3}\); \(\dfrac{1}{3}\)}
A(-1) = 2(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)) + 5
A(-1) = \(\dfrac{2}{9}\) + 1 + 5
A (-1) = \(\dfrac{56}{9}\)
A(1) = 2.(\(\dfrac{1}{3}\) )2- \(\dfrac{1}{3}\).3 + 5
A(1) = \(\dfrac{2}{9}\) - 1 + 5
A(1) = \(\dfrac{38}{9}\)
|y| = 1 ⇒ y \(\in\) {-1; 1}
⇒ (\(x;y\)) = (-\(\dfrac{1}{3}\); -1); (-\(\dfrac{1}{3}\); 1); (\(\dfrac{1}{3};-1\)); (\(\dfrac{1}{3};1\))
B(-\(\dfrac{1}{3}\);-1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).(-1) + (-1)2
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) - 1 + 1
B(-\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\)
B(-\(\dfrac{1}{3}\); 1) = 2.(-\(\dfrac{1}{3}\))2 - 3.(-\(\dfrac{1}{3}\)).1 + 12
B(-\(\dfrac{1}{3};1\)) = \(\dfrac{2}{9}\) + 1 + 1
B(-\(\dfrac{1}{3}\); 1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3};-1\)) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).(-1) + (-1)2
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{2}{9}\) + 1 + 1
B(\(\dfrac{1}{3}\); -1) = \(\dfrac{20}{9}\)
B(\(\dfrac{1}{3}\); 1) = 2.(\(\dfrac{1}{3}\))2 - 3.(\(\dfrac{1}{3}\)).1 + (1)2
B(\(\dfrac{1}{3}\); 1) = \(\dfrac{2}{9}\) - 1 + 1
B(\(\dfrac{1}{3}\);1) = \(\dfrac{2}{9}\)
Bài 2:
\(x+y+1=0\Rightarrow x+y=-1\)
A = \(x\)(\(x+y\)) - y2.(\(x+y\)) + \(x^2\) - y2 + 2(\(x+y\)) + 3
Thay \(x\) + y = -1 vào biểu thức A ta có:
A = \(x\).( -1) - y2 .(-1) + \(x^2\) - y2 + 2(-1) + 3
A = -\(x\) + y2 + \(x^2\) - y2 - 2 + 3
A = \(x^2\) - \(x\) + 1