Cho x , y thuộc R
Tìm Min A =
x2+y2+2/(x)+3/(x+y)
cho x,y∈ R ; x≠y
tìm min P=x2-6xy+6y2/x2-2xy+y2
\(P=\dfrac{x^2-6xy+6y^2}{x^2-2xy+y^2}=\dfrac{-3\left(x^2-2xy+y^2\right)+4x^2-12xy+9y^2}{x^2-2xy+y^2}\)
\(=-3+\left(\dfrac{2x-3y}{x-y}\right)^2\ge-3\)
\(P_{min}=-3\) khi \(2x=3y\)
cho x2+y2+z2=3,x,y,z>0 tìm min A=\(\dfrac{1}{x+2}\)+\(\dfrac{1}{y+2}\)+\(\dfrac{1}{z+2}\)
Lời giải:
Áp dụng BĐT Cauchy-Schwarz:
$A\geq \frac{9}{x+2+y+2+z+2}=\frac{9}{x+y+z+6}$
Áp dụng BĐT Bunhiacopxky:
$(x^2+y^2+z^2)(1+1+1)\geq (x+y+z)^2$
$\Rightarrow 9\geq (x+y+z)^2\Rightarrow x+y+z\leq 3$
$\Rightarrow A\geq \frac{9}{x+y+z+6}\geq \frac{9}{3+6}=1$
Vậy $A_{\min}=1$. Dấu "=" xảy ra khi $x=y=z=1$
Cho x;y thuộc R và x^2 + y^2 -xy=x+y Tìm min max A = x^3 + y^3
A=x3+y3=(x+y)(x2-xy+y2)
=(x+y)2\(\ge\)0
Dấu "=" xảy ra khi x=-y
cho x+y=2 ;x,y thuộc R .tìm Min của A=x3+y3+2xy
\(A=x^3+y^3=2xy\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2-xy\right)\)
\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)
\(\Rightarrow x^2+y^2-xy=2xy\)
\(\Rightarrow x^2+y^2-2xy=xy\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)
Do đó GTNN của A là 0.
A = x3 + y3
= (x + y).(x2 - xy + y2)
= 2.(x2 - xy + y2)
Mà A = 2xy
=> 2.(x2 - xy + y2) = 2xy
=> x2 - xy + y2 = xy
=> x2 - xy - xy + y2 = 0
=> x2 - 2xy + y2 = 0
=> (x - y)2 = 0
Mà (x - y)2 \(\ge\)0
=> GTNN của A là 0 <=> x - y = 0 <=> x = y
Tìm min f(x,y) = x+y với điều kiện (x-1)2 + y2 <=1 và x2 + y2 <=2
Các bạn giúp dùm mình với....
VD13: Tìm GTLN và GTNN của:
b) N=3+4x/x^2+1
c) A=x^2-x+1/x^2+x+1
4) Cho x, y, z thuộc R thì x+y+z+xy+yz+zx=6. Tìm GTNN của A= x^2+y^2+z^2
5) Cho a, b, c thuộc R thỏa mãn: ab+bc+ca=5. Tìm min T=3a^2+3b^2+c^2
rút gọn P=2/x-(x2/(x2-xy)+(x2-y2)/xy-y2/(y2-xy)):(x2-xy+y2)/(x-y)
r tìm gt P với |2x-1|=1 ; |y+1|=1/2
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn.
cho x;y thỏa mãn x2+8/x2+y2/8=8 tìm max và min củaB=xy+2024
đúng thì like giúp mik nha bạn. Thx bạn
Rút gọn:
a) x2 . (x + 4) - (x2 + 1) . (x2 - 1)
b) (y - 3) . (y + 3) . (y2 + 9) - (y2 + 2) . (y2 - 2)
c) (2 + 2y)2 + (x - 2y)2 - 2. (x + 2). (x - 2)
d) (a + b - c)2 - (a - c)2 - 2ab + 2bc