tìm 6 số tự nhiên sao cho tổng của chúng bằng tích của chúng
tìm 6 số tự nhiên sao cho tổng của chúng bằng tích của chúng
a) Tìm số tự nhiên n sao cho 18n+3 chia hết cho 7.
b) Tìm hai số tự nhiên, biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
c) Tìm hai số tự nhiên có tích bằng 300, ƯCLN bằng 5.
d) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10, BCNN của chúng bằng 900.
a) Tìm số tự nhiên n sao cho 18n + 3 chia hết cho 7
b) Tìm hai số tự nhiên,biết rằng tổng của chúng bằng 84,ƯCLN của chúng bằng 6
c) Tìm hai số tự nhiên có tích bằng 300,ƯCLN bằng 5
d) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10,BCNN của chúng bằng 900
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
Tìm 3 số tự nhiên sao cho tổng của chúng bằng tích của chúng
Giả sử 3 số tự nhiên đó lần lượt là a, b, c. Theo yêu cầu đề bài, ta có phương trình:
a + b + c = abc
Chia cả 2 vế của phương trình trên cho abc, ta có:
1/a + 1/b + 1/c = 1
Đây là phương trình Diophantus của bài toán. Chúng ta sẽ giải phương trình này bằng phương pháp thủ công như sau:
Ta có thể giả sử a ≤ b ≤ c (do tính chất giao hoán và kết hợp của phép nhân)
Trường hợp a = 1. Ta có 1/b + 1/c = 1, kết hợp với a ≤ b ≤ c, ta có b ≥ 2, c ≥ 3. Thử từng trường hợp b = 2, 3, ... ta sẽ tìm ra được 1 nghiệm là (1, 2, 3)
Trường hợp a = 2. Ta có 1/b + 1/c = 1/2. Kết hợp với a ≤ b ≤ c, ta có b ≥ 3, c ≥ 5. Thử từng trường hợp b = 3, 4, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Trường hợp a = 3. Ta có 1/b + 1/c = 2/9. Tương tự, ta có b ≥ 4, c ≥ 13. Thử từng trường hợp b = 4, 5, ... và kiểm tra nghiệm c tương ứng, ta không tìm được nghiệm nào.
Vậy nghiệm duy nhất của phương trình ban đầu là (1, 2, 3).
Tìm hai số tự nhiên . Biết rằng tổng của chúng bằng 66 , ƯCLN của chúng bằng 6 , đồng thời có một số chia hết cho 5
Tìm hai số tự nhiên , biết hiệu của chúng bằng 84 và ƯCLN của chúng bằng 12
Tìm hai số tự nhiên , biết tích của chúng bằng 864 và ƯCLN của chúng bằng 6
Help me !
Tìm 2 số tự nhiên sao cho tổng của chúng bằng 105 và tích của chúng bằng 2015?
Bài 1 : Tìm 2 số tự nhiên sao cho tổng của chúng bằng 105 và tích của chúng bằng 2015 .
tích của chúng=2015 nên sẽ có 1 số có tận cùng là 5
=>số còn lại có tận cùng là 0
=>tích có tận cùng là 0
=>mâu thuẫn với đề bài
=>không có 2 số nào thỏa mãn với đề bài
Tìm 4 cặp số tự nhiên và số thập phân sao cho tổng của chúng cũng bằng tích của chúng
a) Tìm hai số tự nhiên , biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
b) Tìm hai số tự nhiên có tích bằng 300, ƯCLN bằng 5.
c) Tìm hai số tự nhiên biết rằng ƯCLN của chúng bằng 10, BCNN của chúng bằng 900.
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : \(a=6.k_1;b=6.k_2\)
Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)
Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)
\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)
+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)
+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)
+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)
\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)
Phần còn lại giống câu a và câu b tự làm