Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Nhật
Xem chi tiết
Nguyễn Yuki
Xem chi tiết
Nguyễn Đình Dũng
23 tháng 10 2016 lúc 21:20

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

Lựu Ngô
Xem chi tiết
Rhider
5 tháng 2 2022 lúc 15:52

Ta có \(63,1.2-21,3.6=0,9.7.10.1,2-21.3,6\)

\(=6,3.1,2-21.3,6\)

\(=0,9.7.4.3-7.3.0,9.4\)

\(=6,3.1,2-6,3.1,2\)

\(=0\)

\(\Rightarrow\dfrac{\left(1+2+......+100\right).\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+.....+99-100}=\dfrac{\left(1+2+.....+100\right)\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{7}-\dfrac{1}{9}\right)0}{1-2+3-4+......+99-100}=0\)

lê đan linh
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
Đào Trọng Luân
4 tháng 6 2019 lúc 10:49

\(\frac{3}{1}+\frac{3}{1+2}+\frac{3}{1+2+3}+...+\frac{3}{1+2+...+100}\)

\(=3\left(\frac{1}{\frac{1\cdot2}{2}}+\frac{1}{\frac{2\cdot3}{2}}+\frac{1}{\frac{3\cdot4}{2}}+...+\frac{1}{\frac{100\cdot101}{2}}\right)\)

\(=3\left(\frac{2}{1\cdot2}+\frac{2}{2\cdot3}+...+\frac{2}{100\cdot101}\right)\)

\(=6\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{100\cdot101}\right)\)

\(=6\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(=6\left(1-\frac{1}{101}\right)=6-\frac{6}{101}=\frac{606-6}{101}=\frac{600}{101}\)

Khánh
Xem chi tiết
doantrancaotri
6 tháng 11 2016 lúc 17:17

\(2.\frac{100.101}{2}\) = 10100

Trần Thảo Vân
6 tháng 11 2016 lúc 18:41

\(2.\frac{100.101}{2}=10100\)

Nguyễn Lưu Hương
Xem chi tiết
soyeon_Tiểu bàng giải
27 tháng 8 2016 lúc 12:51

3/1 + 3/1+2 + 3/1+2+3 + 3/1+2+3+4 + ... + 3/1+2+3+4+...+100

= 3 × (1/0+1 + 1/1+2 + 1/1+2+3 + 1/1+2+3+4 + ... + 1/1+2+3+4+...+100)

= 3 × (1/(1+0)×2:2 + 1/(1+2)×2:2 + 1/(1+3)×3:2 + 1/(1+4)×4:2 + ... + 1/(1+100)×100:2)

= 3 × (2/1×2 + 2/2×3 + 2/3×4 + 2/4×5 + ... + 2/100×101)

= 3 × 2 × (1/1×2 + 1/2×3 + 1/3×4 + 1/4×5 + ... + 1/100×101)

= 6 × (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ... + 1/100 - 1/101)

= 6 × (1 - 1/100)

= 6 × 100/101

= 600/101

ĐẶNG THỊ THANH HOA
27 tháng 8 2016 lúc 13:01

không biết làm

Nguyễn Lưu Hương
26 tháng 3 2017 lúc 16:17

3/1 + 3/1+2 + 3/1+2+3 + ..................... + 3/1+2+3+4+ ...+100

= 3 x [1/1 + 1/1x3 +1/2x3 +1/2x5 +1/3x5 +1/3x7 + ... 1/50 x 99 +1/50 x 101]

= 3 x [1/1 x (1/1+1/3) +1/2 x (1/3+1/5) +  1/3 x(1/5+1/7) + ... + 1/50 x (1/99+1/101)

= 3 x (4/1x3 +4/3x5 +4/5x7 + ... 4/99x101)

= 3 x [(4/1 -4/3 +4/3 -4/5 +4/5 -4/7+...4/99 -4/101) : 2]

= 3 x [(4/1-4/101) :2]

= 3 x 200/101

= 600/101

nguyễn kim phúc
Xem chi tiết
ミ★Zero ❄ ( Hoàng Nhật )
11 tháng 3 2021 lúc 21:27

\(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)

Để í ngoặc \(\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]\)

\(\Leftrightarrow\left[\frac{6}{7}+-\frac{6}{7}\right]\)

\(\Leftrightarrow0\)

Vậy biểu thức \(\left(2+4+6+...+100\right).\left[\frac{3}{5}:0,7+3.\frac{-2}{7}\right]:\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)có giá trị bằng 0

Khách vãng lai đã xóa
Huy Trần
Xem chi tiết