Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
no name
Xem chi tiết
One Two Three
Xem chi tiết
Nguyễn Võ Anh Nguyên
Xem chi tiết
Hoàng Minh Hoàng
31 tháng 7 2017 lúc 9:47

x^2+1>=2x suy ra 1/x^2+1=y<=1/2x+y=1/x+x+y=1/9(9/x+x+y)<=1/x+1/x+1/y.

A(BT)<=1/9(3/x+3/y+3/z)=1/3(1/x+1/y+1/z)

Mà từ x+y+z=xy+yz+zx suy ra x+y+z=xy+yz+zx>=3

dễ dàng cm bằng phương pháp đánh giá suy ra 1/x+1/y+1/z<3

suy ra A<1/3.3=1(đpcm)

Phác Chí Mẫn
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 2 2020 lúc 0:29

\(x^2+xy+y^2=\left(x+y\right)^2-xy\ge\left(x+y\right)^2-\frac{1}{4}\left(x+y\right)^2=\frac{3}{4}\left(x+y\right)^2\)

\(\Rightarrow\sqrt{x^2+xy+y^2}\ge\frac{\sqrt{3}}{2}\left(x+y\right)\)

Vậy:

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(x+y\right)^2}{1+4xy}+\frac{\left(y+z\right)^2}{1+4yz}+\frac{\left(z+x\right)^2}{1+4zx}\right]\)

\(P\ge\frac{\sqrt{3}}{2}\left[\frac{\left(2x+2y+2z\right)^2}{3+4\left(xy+yz+zx\right)}\right]\ge\frac{\sqrt{3}}{2}.\frac{9}{3+\frac{4}{3}\left(x+y+z\right)^2}=\frac{3\sqrt{3}}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{2}\)

Khách vãng lai đã xóa
Ngọc Anh Phạm
Xem chi tiết
Pham thi thu Phuong
Xem chi tiết
ST
27 tháng 11 2018 lúc 14:01

Câu hỏi của Vũ Thảo Vy - Toán lớp 8 - Học toán với OnlineMath tham khảo

Thanh Do
Xem chi tiết
Hắc Phong
Xem chi tiết
Neet
26 tháng 1 2017 lúc 17:27

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

\(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{y^3z^3+x^3z^3+x^3y^3}{x^2y^2z^2}=\frac{\left(xy+yz+xz\right)\left(...\right)}{x^2y^2z^2}=0\)

Hà Lê
Xem chi tiết
Dương Nguyễn
15 tháng 7 2016 lúc 12:05

Đặt bài toán phụ : Chứng minh nếu \(a+b+c=0\Rightarrow a^3+b^3+c^3=3abc\)

Thật vậy :

 \(a^3+b^3+c^3=\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(a+b+c=0\Rightarrow\left(a+b+c\right)^3=0\)

\(a+b=-c\)

\(b+c=-a\)

\(c+a=-b\)

\(\Rightarrow\left(a+b+c\right)^3-3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

\(=-3\left(-c\right)\left(-b\right)\left(-a\right)\)

\(=3abc\)

Trở lại bài toán chính :

Ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)

\(\Rightarrow\frac{yz}{xyz}+\frac{xz}{xyz}+\frac{xy}{xyz}=0\)

\(\Rightarrow\frac{yz+xz+xy}{xyz}=0\)

\(\Rightarrow xy+xz+yz=0\)

\(\Rightarrow\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3\left(xy\right)\left(xz\right)\left(yz\right)=3x^2y^2z^2\)

Lại có:

\(P=\frac{xy.y^2x^2}{x^2y^2z^2}+\frac{xz.z^2.x^2}{x^2y^2z^2}+\frac{z^2.y^2.yz}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3}{x^2y^2z^2}+\frac{\left(xz\right)^3}{x^2y^2z^2}+\frac{\left(yz\right)^3}{x^2y^2z^2}\)

\(=\frac{\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)}{x^2y^2z^2}\)

Thay \(\left(xy\right)^3+\left(xz\right)^3+\left(yz^3\right)=3x^2y^2z^2;\)ta có:

\(P=\frac{3x^2y^2z^2}{x^2y^2z^2}\)

\(=3\)

Vậy \(P=3.\)