gia su x=a/m,y=b/m (a,b,m thuoc Z,m>0) va x>y.Hay chung to rang neu chon z=a+b/2m thi ta co x<z<y
gia su x=a/m, y=b/m (a,b,m thuoc z, m>0) va x<y.hay chung to rang neu chon z=a+b/2m thi ta co x<z<y.
minh moi hoc lop 7 minh ko hieu bai nay ai giai giup minh voi
Gia su x = a/m;y = b/m (a;b;m thuoc Z;m>0) va x< y. Hay chung to rang neu chon z = a+b/2m thi ta co x<y<z
Vì x < y => a < b
Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\) ; \(z=\frac{a+b}{2m}\)
Vì a < b => a + a < a + b => 2a < a + b
=> x < y (1)
Vì a < b => a + b < b + b => a + b < 2b
=> z < y (2)
Từ (1) và (2) => \(x< y< z\)
k mk nha Capricorn girl !
Gia su x = a/m;y = b/m (a;b;m thuoc Z;m>0) va x< y. Hay chung to rang neu chon z = a+b/2m thi ta co x<y<z
x < y = \(\frac{a}{m}=\frac{b}{m}\Rightarrow a< b\)m < 0 và x < y
Chọn z = \(\frac{a+b}{2m}\)Thì ta có x < z < y
x < y => 2m a < b
k nha bn
A mk nhầm, mk sửa nha :
Vì x < y => a < b
Ta có : \(x=\frac{a}{m}=\frac{2a}{2m}\) ; \(y=\frac{b}{m}=\frac{2b}{2m}\) ; \(z=\frac{a+b}{2m}\)
Vì a < y => a + b < b + b => a + b < 2b
=> z < y
Mà x < y
=> \(x< z< y\)
Gia su \(x=\frac{a}{m},y=\frac{b}{m}\)va x<y.Hay chung to rang neu chon \(z=\frac{a+b}{2m}\)thi ta co x<y<z
Su dung tinh chat neu a,b,c thuoc zva a<b thi a+c<b+c
giup mik voi nha tik cho cam on
Do x < y
=> \(\frac{a}{m}< \frac{b}{m}\)
=> \(\frac{a}{m}+\frac{a}{m}< \frac{a}{m}+\frac{b}{m}< \frac{b}{m}+\frac{b}{m}\)
=> \(\frac{2a}{m}< \frac{a+b}{m}< \frac{2b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{m}:2< \frac{b}{m}\)
=> \(\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)
=> x < z < y
x. (x^2)^3 = x^5
x^7 ≠ x^5
Nếu,
x^7 - x^5 = 0
mủ lẻ nên phương trình có 3 nghiệm
Đáp số:
x = -1
hoặc
x = 0
hoặc
x = 1
giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y
giai gium minh voi
giả su x =a/m , y = b/m (a,b thuoc z, m >0) va x <y. hay chung to rang neu chon z=a+b/2m thi ta co x<z <y
giai gium minh voi. bạn viết dấu giùm mik nhé
gia su x=a/m. y=b/m (a,b,m la so nguyen, m>0) va x<y. hay chung to rang neu chon z=a+b/2m thi ta co x<z<y
Bai 1 :
Gia su x =\(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)(a,b,m thuoc Z ; m > 0) va x < y
Hay chung to rang neu chon z = \(\dfrac{2a+1}{2m}\) thi ta co x < z <y
a/m < b/m
=> a<b
Mà z = 2a +1/2m
QUy ra cùng mẫu : x = 2a/2m; 2a < 2a+1 => x < z
y = b/m = 2b/2m mà a, b thuộc Z nên ít nhất b - a = 1 => 2b-2a ít nhất bằng 2
Như vậy, 2b/2m > 2a+1/2m => b>z
Do đó x<z<y
gia su x=a/m,y=b/m(a,b,m€z,m>0,x<y)
hay chung to rang neu chon Z=a+b/2•m thi ta co x<z<y
Từ \(x=\frac{a}{m}\Rightarrow x=\frac{2a}{2m}\)
\(y=\frac{b}{m}\Rightarrow y=\frac{2b}{2m}\)
\(z=\frac{a+b}{2m}\)
Vì x<y (theo đề)
=>\(\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\) (với m>0)
=>a+a<a+b<b+b
=>2a<a+b<2b
=>\(\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)
=>x<z<y (đpcm)
Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b \(\in\)Z ; m>0) va x<y
Hay chung to rang z = \(\dfrac{2a+1}{2m}\) thi ta co x<z<y
Ta co : x<y =>\(\dfrac{a}{m}< \dfrac{b}{m}\Rightarrow a< b\)
\(x=\dfrac{a}{m}=\dfrac{2a}{2m}\)
\(y=\dfrac{b}{m}=\dfrac{2b}{2m}\)
\(z=\dfrac{2a+1}{2m}\)
do 2a < 2a+1 => \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\)=> x<z (1)
a<b => a+1 \(\le\)b
\(\Rightarrow2a+2\le2b\)
\(\Rightarrow2a+1< 2b\)
\(\Rightarrow\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\)
\(\Rightarrow z< y\) (2)
\(Tu\left(1\right)va\left(2\right)\)
\(\Rightarrow x< z< y\)
Gia su x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\) (a,b ∈∈Z ; m>0) va x<y
Hay chung to rang z = \(\dfrac{2a+1}{2m}\) thi ta co x<z<y
Giải
x = \(\dfrac{a}{m}\), y = \(\dfrac{b}{m}\)
mà x < y => a < b
=> \(x=\dfrac{2a}{2m};y=\dfrac{2b}{2m}\)
Ta có : a < b
=> a + a < a + a + 1
=> 2a < 2a + 1
=> \(\dfrac{2a}{2m}< \dfrac{2a+1}{2m}\) hay x < z (1)
Ta có : a < b
=> a + a + 1 < b + b
=> 2a+ 1 < 2b
=> \(\dfrac{2a+1}{2m}< \dfrac{2b}{2m}\) hay z < y (2)
Từ (1) và (2) => x < y <z
cho x=a/b va y=b/m voi a,b,m thuoc Z ;m>0 va x<y .Chung minh rang Z=a+b/2m thi x<Z<t