Cho tỉ lệ thức: a/b=c/d.Chứng tỏ rằng a-b/a+b=c-d/c+d
B1:cho tỉ lệ thức a/b=c/d.chứng minh rằng ta có các tỉ lệ thức sau:
a-b/a+b=c-d/c+d
đặt a/b=c/d=k
suy ra a=bk;c=dk
suy ra a-b/a+b=bk-b/bk+b=b(k-1)/b(k+1)=k-1/k+1 (1)
c-d/c+d=dk-d/dk+d=d(k-1)/d(k+1)=k-1/k+1 (2)
từ 1 và 2 suy ra dpcm
cho tỉ lệ thức a/b=c/d.chứng minh rằng ac/bd=a^2-c^2/b^2-d^2
Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{ac}{bd}=\frac{a^2-c^2}{b^2-d^2}\)( tính chất của dãy tỉ số bằng nhau )
Vậy ...
TL :
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk;c=dk\)
=> Vế trái \(=\frac{ac}{bd}=\frac{bkdk}{bd}=k^2\)
=> Vế phải \(=\frac{a^2+c^2}{b^2+d^2}=\frac{b^2k^2+d^2k^2}{b^2+d^2}=\frac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\)
\(\Rightarrow\)Vế trái = Vế phải
\(\Rightarrowđpcm\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
\(\Rightarrow\frac{ac}{bd}=\frac{bdk^2}{bd}=k^2\)(1)
và \(\frac{a^2-c^2}{b^2-d^2}=\frac{b^2k^2-d^2k^2}{b^2-d^2}=\frac{k^2\left(b^2-d^2\right)}{b^2-d^2}=k^2\)(2)
Từ (1) và (2) suy ra \(\frac{ac}{bd}=\frac{bdk^2}{bd}=\frac{a^2-c^2}{b^2-d^2}\left(đpcm\right)\)
Cho tỉ lệ thức a/b =c/d.Chứng minh rằng :a/b=a+c/b+d
.Giải dùm mk nhae
.Mơn các bn nhìu.
cho a/b=k (1)=>a=bk
c/d=k=>c=dk
a+c/b+d=bk+dk/ b+d=k(b+d)/ b+d=k(2)
từ 1 và 2 => đfcm
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy \(\frac{a}{b}=\frac{a+c}{b+d}\left(ĐPCM\right)\)
cho tỉ lệ thức a/b=c/d.Chứng minh rằnga/a-b=c/c-d
Ta có:a/b=c/d
<=>1 - a/b=1 - c/d
<=>a/a - a/b=c/c - c/d
<=>a/a-b=c/c-d (đpcm)
Cho tỉ lệ thức: a/b = c/d.Chứng minh có các tỉ lệ thức sau:
a/a + b = c/c + d
Từ \(\frac{a}{b}=\frac{c}{d}\)\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\)\(\Rightarrow\frac{a}{a+b}=\frac{c}{c+d}\)( đpcm )
Cho tỉ lệ thức a/b=c/d.Chứng minh :a)a/a-b=c/c-d
b)aⁿ-bⁿ/cⁿ-dⁿ=(a-b)ⁿ/(c-d)ⁿ,c)a/3a+b=c/3a-d
a) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}.\)
\(\Rightarrow\frac{a}{c}=\frac{a-b}{c-d}\Rightarrow\frac{a}{a-b}=\frac{c}{c-d}\)
b) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)(*)
mà \(\frac{a^n}{c^n}=\frac{b^n}{d^n}=\frac{a^n-b^n}{c^n-d^n}\)
Từ (*) \(\Rightarrow\frac{a^n-b^n}{c^n-d^n}=\frac{\left(a-b\right)^n}{\left(c-d\right)^n}\)
c) ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{3a}{3c}=\frac{b}{d}=\frac{3a+b}{3c+d}=\frac{3a-b}{3c-d}\)
\(\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}=\frac{3a-b}{3c-d}\)
...
phần c mk ko bk xl bn nha! nom giùm mk đề
Cho tỉ lệ thức a/b=c/d.Chứng minh
a/3a+b=c/3a+d
Sai đề rồi nha bn phải là : \(\frac{a}{3a+b}=\frac{c}{3c+d}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)\(=\frac{3a}{3c}\)
\(=\frac{3a+b}{3c+d}\)( Theo tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\frac{a}{c}=\frac{3a+b}{3c+d}\)\(\Rightarrow\frac{a}{3a+b}=\frac{c}{3c+d}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\),c khác +d,-d.Chứng tỏ rằng:
\(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{a^2+b^2}{c^2+d^2}\)\(=\frac{a^2-b^2}{c^2-d^2}\)
#)Giải :
Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
Lại có : \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\left(\frac{a+b}{c+d}\right)^2=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\left(2\right)\)
\(\Rightarrowđpcm\)
Cho tỉ lệ thức a/b=c/d.Chứng minh rằng ta có các tỉ lệ thức sau (giả thiết các tỉ lệ thức đều có ý nghĩa):
a,(2a+3b)/(2a-3b)=(2c+3d)/(2c-3d)
b,ab/cd=(a2-b2)/(c2-d2)
c,[(a+b)/(c+d)]2/(a2+b2)/(c2+d2)