Giả sữ:
a/b=c/d tương đương (#) (a+b)/(a-b) = (c+d)/(c-d)
Ta có:
(a+b)/(a-b) = (c+d)/(c-d)
# (a+b)(c-d) = (c+d)(a-b)
# ac-ad+bc-bd = ac-bc+ad-bd
# 2ad = 2bc
# a/b = c/d – điều phải chứng minh.
Đặt: a/b = c/d = k => a = bk, c = dk
Ta có:
a + b/a - b = bk + b/bk - b = b(k+1)/ b(k-1) = k+1/k-1 (1)
c + d/c- d = dk +d/ dk - d = d(k+1)/d(k-1) = k+1/k-1 (2)
Từ (1) và (2) => a+b/a-b = c+d/c-d