Cho 2 số a và b thỏa mãn :
\(a-b=2\left(a+b\right)=\frac{a}{b}\)
Chứng minh a = -3b ; Tính \(\frac{a}{b}\); Tìm a và b
cho các số thực dương thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
\(\left(a+3b\right)\left(b+3a\right)\le\left(\frac{4a+4b}{2}\right)^2=\left(2a+2b\right)^2\)
=>\(\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\le\frac{1}{2}\left(2a+2b\right)=a+b\)
Mình làm phần dễ nhất rồi, còn lại của bạn đó ^^
Đặt . Do đó . Cần chứng minh:
Or
Bình phương 2 vế và xét hiệu, ta cần chứng minh:
Đó là điều hiển nhiên vì:
Done.
Cho các số a,b,c thỏa mãn 0<a,b,c<1/2 và 2a+3b+4c=3
Tìm min P=\(\frac{2}{a\left(3b+4c-2\right)}+\frac{9}{b\left(4a+8c-3\right)}+\frac{8}{c\left(2a+3b-1\right)}\)
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiĐể câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏiCho các số thực dương a,b,c thỏa mãn a+b+c=3. Chứng minh rằng
\(\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)
\(VP=\frac{6}{\sqrt{\left(3a+bc\right)\left(3b+ca\right)\left(3c+ab\right)}}\)
\(=\frac{6}{\sqrt{\left[\left(a+b+c\right)a+bc\right]\left[\left(a+b+c\right)b+ca\right]\left[\left(a+b+c\right)c+ab\right]}}\)
\(=\frac{6}{\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+1\right)^2}}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
\(VT=\frac{1}{3a+bc}+\frac{1}{3b+ca}+\frac{1}{3c+ab}\)
\(=\frac{1}{\left(a+b+c\right)a+bc}+\frac{1}{\left(a+b+c\right)b+ac}+\frac{1}{\left(a+b+c\right)c+ab}\)
\(=\frac{\left(b+c\right)+\left(a+c\right)+\left(a+b\right)}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}=\frac{6}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
Vậy VT = VP, đẳng thức được chứng minh
Cho a,b,c là các số thực dương thỏa mãn a+b+c=5 và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3.\)
Chứng minh rằng:\(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}.\)
Ta có:
\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\frac{\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2-\left(a+b+c\right)}{2}=\frac{9-5}{2}=2\)
Suy ra \(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)
Tương tự, ta áp dụng với hai biến thực dương còn lại, thu được:
\(\hept{\begin{cases}b+2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\\c+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\end{cases}}\)
Khi đó, ta nhân vế theo vế đối với ba đẳng thức trên, nhận thấy: \(\left(a+2\right)\left(b+2\right)\left(c+2\right)=\left[\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\right]^2\)
\(\Rightarrow\) \(\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)\) (do \(a,b,c>0\) )
nên \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}\left(\sqrt{b}+\sqrt{c}\right)+\sqrt{b}\left(\sqrt{c}+\sqrt{a}\right)+\sqrt{c}\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{c}+\sqrt{a}\right)}\)
\(=\frac{2\left(\sqrt{ab}+\sqrt{ca}+\sqrt{ca}\right)}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
\(\Rightarrow\) \(đpcm\)
Cho các số thực a,b,c thỏa mãn : \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\). Chứng minh rằng :
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
cho các số thực dương a,b thỏa mãn \(\sqrt{a}+\sqrt{b}=1\)
Chứng minh rằng \(3\left(a+b\right)^2-\left(a+b\right)+4ab\ge\frac{1}{2}\sqrt{\left(a+3b\right)\left(b+3a\right)}\)
Cho 3 số thực a, b, c thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
Chứng minh \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
gia thiet la = chu nhi, sao lai +.neu la bag thi ban nhan cheo roi phan h thanh nhan tu.(a+b)(c+b)(c+a)=0 thay vao la ra
Cho a,b,c là các số thỏa mãn abc=1.Chứng minh \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}\ge a\left(b+1\right)+b\left(c+1\right)+c\left(a+1\right)\)
Ta có: \(\frac{a^2+1}{c^2a^2}=\frac{1}{c^2}+\frac{1}{a^2c^2}=\frac{1}{c^2}+b^2\)
CMTT: \(\frac{b^2+1}{a^2b^2}=\frac{1}{a^2}+c^2\)
\(\frac{c^2+1}{b^2c^2}=\frac{1}{b^2}+a^2\)
=> \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+a^2+b^2+c^2\)
Áp dụng bđt: x2 + y2 + z2 \(\ge\)xy + yz + xz
CM đúng: <=> (x - y)2 + (y - z)2 + (z - x)2 \(\ge\)0 (luôn đúng với mọi x,y, z)
Do đó: \(\frac{a^2+1}{c^2a^2}+\frac{b^2+1}{a^2b^2}+\frac{c^2+1}{b^2c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}+ab+bc+ac=a+b+c+ab+bc+ac\)
\(=a\left(b+1\right)+b\left(c+1\right)+c\left(a+1\right)\)(đpcm)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(a-c\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\)
Đề phải là số thực không âm mới đúng