1.Cho 10k-1 chia hết cho 19 với k>11.CMR
a,102k -1 chia hết cho 19
b,103 -1chia hết cho 19
cho 10k -1 chia hết cho 19(k>1), CMR 102k -1 chia hết cho 19
Cho 10 k - 1 ⋮ 19 với k > 1. Khi đó M = 10 2 k - 1 chia hết cho số nào dưới đây?
A. 9
B. 11
C. 13
D. 19
Một lớp học có 24 nam và 20 nữ.Có thể chia lớp này nhiều nhất thành mấy tổ sao cho số nam và nữ ở mỗi tổ bằng nhau.Lúc đó,ở mỗi tổ có bao nhiêu nam và bao nhiêu nữ?
Cho 10k-1chia hết cho 19 với k>1.Chứng tỏ 102k-1chia hết cho9.
Câu 1:
Số tổ nhiều nhất có thể chia là UCLN(24;20)
hay số tổ nhiều nhất có thể chia là 4 tổ
Câu 2:
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
Cho 10.k-1chia hết cho 19 với k>1. CMR
a) 10^2.k - 1 chia hết cho 19
b) 10^3.k - 1 chia hết cho19
10k-1 chia hết cho 19 với k >1
chứng minh rằng
a,102k-1 chia hết cho 19
b, 103k chia hết cho 19
a/ 10 ^2k - 1 = 10 ^ 2k - 10 ^k + 10 ^ k -1 = 10 ^k(10 ^ k - 1 ) + ( 10 ^ k - 1 ) chia hết cho 19. Bạn hay xem lại các tính chất
b/ 10^3k -1 = 10 ^ 3k - 10 ^k + 10^ k - 1 = 10 ^ k ( 10^2k - 1 ) + ( 10 ^k - 1) chia hết cho 19. xem lại bài a nha. h
nhớ tick nha
cmr: tồn tại k thuộc N ; k lớn hơn 1 để 10k-1 chia hết cho 19
a﴿ 10^ k ‐ 1 chia hết cho 19 => 10 k ‐ 1 = 19n ﴾n là số tự nhiên﴿
=> 10^ k = 19n + 1 => 10^ 2k = ﴾10^ k ﴿2 = ﴾19n +1﴿2 = ﴾19n +1﴿﴾19n+1﴿ = 361n 2 + 38n + 1
=> 10 2k ‐ 1 = 361n 2 + 38n + 1 ‐ 1 = 361n 2 + 38n chia hết cho 19 => 10 2k ‐ 1 chia hết cho 19
tk nha bạn
thank you bạn
(^_^)
Cho 10k -1 chia hết cho 19 với k>1.Chứng minh rằng:
a)102k-1 chia hết cho 19
b)103k-1 chia hết cho 19
Cho 10^k-1chia hết cho 19 .CMR:a) 10^2k -1 chi hết 19
\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)⋮19\)
cho:10^k-1 chia hết cho 19 với k>1 chứng minh rằng:10^2k-1 chia hết cho 19
Theo một tính chất cơ bản ta dễ có:
\(10^{2k}-1=\left(10^k\right)^2-1⋮10^k-1⋮19\)
Suy ra đpcm