Có bao nhiêu số nguyên thỏa mãn:
A.
5
B.
3
C.
4
D.
6
Có bao nhiêu số nguyên thỏa mãn:
A.
5
B.
3
C.
4
D.
6
cho a,b,c,d thỏa mãn:2a+5b/3a-4b=2c+5b/3c-4d
TỔNG CÁC SỐ NGUYÊN THỎA MÃN -5<x<4 LÀ:
A. -5
B. -4
C. 4
D. 0
Cho 4 số thực a, b, c, d khác 0 thỏa mãn a+2b+3c+4d khác 0 và 3a+2b +3c+4d/a=a+6b+3c+4d/2b=a+2b+9c+4d/3c=a+2b+3c+12d/4a
Cho 4 số nguyên ko âm a,b,c,d thỏa mãn \(a^2+2b^2+3c^2+4d^2=36,2a^2+b^2-2d^2=6\). Tìm GTNN của \(Q=a^2+b^2+c^2+d^2\)
từ hệ điều kiện, bằng cách cộng theo vế ta được: pmin=14 đạt được khi (2) ta nhận được 0≤b≤2⇔[b=0b=2Khi đó:-Với (2) có dạng a thỏa mãn.-Với {a^2+3c^2=28, 2a^2=2 mà ⇒{a=1c=3Vậy a=1,b=2,c=3,d=0
Từ giả thiết suy ra \(3\left(a^2+b^2+c^2+d^2\right)-d^2=42\)
\(\Leftrightarrow3Q-d^2=42\)
\(\Rightarrow Q=\dfrac{42+d^2}{3}\ge\dfrac{42}{3}=14\)
\(\Rightarrow minQ=14\Leftrightarrow\left\{{}\begin{matrix}d=0\\a^2+2b^2+3c^2=36\left(1\right)\\2a^2+b^2=6\left(2\right)\end{matrix}\right.\)
Từ \(\left(2\right)\Rightarrow b^2⋮2\Rightarrow b⋮2\)
Vì \(b^2=6-2a^2\le6\Rightarrow0\le b\le\sqrt{6}\Rightarrow b\in\left\{0;2\right\}\)
TH1: \(b=0\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=36\\2a^2=6\end{matrix}\right.\Rightarrow a=\sqrt{3}\left(l\right)\)
TH2: \(b=2\) ta được \(\left\{{}\begin{matrix}a^2+3c^2=28\\2a^2=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=3\\a=1\end{matrix}\right.\)
Vậy \(minQ=14\Leftrightarrow\left(a;b;c;d\right)=\left(1;2;3;0\right)\)
CHo 2 số nguyên a,b(a\(\ge\)b) và số nguyên dương c thỏa mãn a(a+1)+b(b-1)=c(c+1)
tính giá trị biểu thức A =3c-5b
Cho a+b+c+d ≠ 0 thỏa mãn:
\(\dfrac{a}{b+c+d}=\dfrac{b}{a+c+d}=\dfrac{c}{b+a+d}=\dfrac{d}{c+b+a}\)
Tính P = \(\dfrac{2a+5b}{3c+4d}+\dfrac{2b+5c}{3d+4a}+\dfrac{2c+5d}{3a+4b}+\dfrac{2d+5a}{3c+4b}\)
Cho x là số nguyên thỏa mãn (x + 3)^3 : 3 – 1 = -10. Chọn câu đúng:
a, x = -5
b, x < -5
c, x > -4
d, x > 0
Cho 2 số nguyên tố a,b\(\left(a\ge b\right)\) và số nguyên dương c thỏa mãn a(a+1)+b(b-1)=c(c+1)
Tính giá trị biểu thức A=3c-5b
Hiển nhiên \(c\left(c+1\right)>a\left(a+1\right)\Rightarrow c>a\ge b\)
Nếu \(c\ge2a\Rightarrow c\left(c+1\right)\ge2a\left(2a+1\right)=4a^2+2a\)
Mà \(a\left(a+1\right)+b\left(b-1\right)\le a\left(a+1\right)+a\left(a-1\right)=2a^2\)
\(\Rightarrow2a^2\ge4a^2+2a\Rightarrow2a^2+2a\le0\) (vô lý)
\(\Rightarrow c< 2a\)
Ta có:
\(4a\left(a+1\right)+4b\left(b-1\right)+1=4c\left(c+1\right)+1\)
\(\Leftrightarrow4a\left(a+1\right)+\left(2b-1\right)^2=\left(2c+1\right)^2\)
\(\Leftrightarrow4a\left(a+1\right)=\left(2c+1\right)^2-\left(2b-1\right)^2\)
\(\Leftrightarrow a\left(a+1\right)=\left(c-b+1\right)\left(c+b\right)\) (*)
Nếu \(c-b+1\ge a\Rightarrow\left(c-b+1\right)\left(c+b\right)>a\left(a+b\right)>a\left(a+1\right)\) (ktm)
\(\Rightarrow c-b+1< a\) \(\Rightarrow c-b+1\) ko có ước nguyên tố nào là a
\(\Rightarrow c+b⋮a\Rightarrow\dfrac{c+b}{a}\in Z\) (1)
Theo chứng minh ban đầu, ta có \(b\le a< c< 2a\)
\(\Rightarrow a< c+b< 2a+a=3a\Rightarrow1< \dfrac{c+b}{a}< 3\) (2)
(1);(2) \(\Rightarrow\dfrac{c+b}{a}=2\Rightarrow c+b=2a\)
Thế vào (*) \(\Rightarrow a+1=2\left(c-b+1\right)\Rightarrow2c-2b+1=a\)
\(\Rightarrow2\left(2a-b\right)-2b+1=a\Rightarrow3a-4b+1=0\)
\(\Rightarrow3\left(a-1\right)=4\left(b-1\right)\)
\(\Rightarrow b-1⋮3\Rightarrow b-1=3k\Rightarrow b=3k+1\)
\(\Rightarrow a=4k+1\)
\(\Rightarrow c=2a-b=5k+1\)
\(\Rightarrow A=3\left(5k+1\right)-5\left(3k+1\right)=-2\)