Chứng tỏ đa thức M(x) = 2x^4 + 3x^2 + 6 không có nghiệm
cho đa thức f(x)=2x^6+3x^2+5x^3-2x^2+4x^4-x^3+1-4x^3-x^4
chứng tỏ đa thức trên không có nghiệm
Chứng tỏ rằng đa thức f(x)=3x6+2x4+x2+1 Không có nghiệm
Ta có:
3\(x^6\)\(\ge\)0 với mọi x
2\(x^4\)\(\ge\)0 với mọi x
\(x^2\)\(\ge\)0 với mọi x
=> f(x)=3\(x^6\)+2\(x^4\)+\(x^2\)+1 \(\ge\)0+0+0+1\(\ge\)1 với mọi x
Vậy f(x) không co nghiệm
Bài 1:Tìm nghiệm của đa thức sau:
a,C= 3x+5+(7-x)
b,D= 3(2x -8) -2(4-x)
Bài 2: Cho đa thức M(x)= 5x3 +2x4-x2 +3x2 -x3 -x4 +1 -4x3
Chứng tỏ đa thức M(x) không có nghiệm.
Bài 3: Cho đa thức f(x)= 2x4 + 3x +1
a, x=-1 có phải là nghiệm của f(x) không? Vì sao?
b, Chứng tỏ đa thức f(x) không có nghiệm dương.
CÁC BẠN GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP!^^
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
EM CHỊU RỒI ANH ƠI!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho đa thức \(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
Chứng tỏ đa thức \(Q\left(x\right)\) không có nghiệm.
\(Q\left(x\right)=-3x^4+4x^3+2x^2+\dfrac{2}{3}-3x-2x^4-4x^3+8x^4+1+3x\)
\(=\left(-3x^4-2x^4+8x^4\right)+\left(4x^3-4x^3\right)+2x^2-\left(3x-3x\right)+\left(1+\dfrac{2}{3}\right)\)
\(=3x^4+2x^2+\dfrac{5}{3}\)
\(3x^4+2x^2+\dfrac{5}{3}=0\)
\(\Rightarrow3x^4+2x^2=-\dfrac{5}{3}\)(Vô lí vì \(3x^4\) và \(2x^2\) luôn lớn hơn hoặc bằng 0)
Vậy Q(x) không có nghiệm
Q(x)=3x^4+2x^2+5/3>=5/3>0 với mọi x
=>Q(x) vô nghiệm
a) Tìm nghiệm của đa thức sau P(x)=2x+6
b) Chứng tỏ đa thức M(y)=2y^4+3y^2+1 không có nghiệm
a) 2x+6=0 => 2x=-6 => x=-6:2=-3
ĐS: x=-3
b) Ta có:
M(y)=2y4+3y2+1=y4+2y2+1+y4+y2=(y2+1)2+y2(y2+1)=(y2+1)(y2+1+y2)=(y2+1)(2y2+1)
Nhận thấy; y2+1 và 2y2+1 luôn lớn hơn 1 với mọi y
=> M(y) lớn hơn 1 với mọi y => Đa thức M(y) không có nghiệm
a) Ta có: P(x) = 3y + 6 có nghiệm khi
3y + 6 = 0
3y = -6
y = -2
Vậy đa thức P(y) có nghiệm là y = -2.
b) Q(y) = y4 + 2
Ta có: y4 có giá trị lớn hơn hoặc bằng 0 với mọi y
Nên y4 + 2 có giá trị lớn hơn 0 với mọi y
Tức là Q(y) ≠ 0 với mọi y
Vậy Q(y) không có nghiệm.
Chứng tỏ đa thức M(x) không có nghiệm: M(x) = 2x^3 - 2x + x^2 - x^3 + 3x + 2
Cho đa thức M(x) = 3x^4 + x^2 + 4. Chứng tỏ rằng M(x) không có nghiệm
M(x) = 0 => 3x4 + x2 + 4 = 0 (thay đa thức bằng 0)
=> 3x4 + x2 = -4
mà 3x4 \(\ge\)0
x2 \(\ge\) 0
nên suy ra: 3x4 + x2 \(\ge\) 0
=> x không tồn tại hay đa thức M ko có nghiệm (vô nghiệm)
Cho hai đa thức :
\(P\left(x\right)=-2x^2+3x^4+x^3+x^2-\dfrac{1}{4}x\\ Q\left(x\right)=x^4+3x^2-4-4x^3-2x^2\)
Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
\(P\left(0\right)=3.0^4+0^3-0^2+\dfrac{1}{4}.0=0+0-0+0=0\)
\(Q\left(0\right)=0^4-4.0^3+0^2-4=0-0+0-4=-4\)
vậy Chứng tỏ x=0 là nghiệm của đa thức P(x), nhưng không phải là nghiệm của đa thức Q(x)
thu gọn
\(P\left(x\right)=3x^4+x^3\left(-2x^2+x^2\right)+\dfrac{1}{4}x=3x^4+x^3-x^2+\dfrac{1}{4}x\)
\(Q\left(x\right)=x^4-4x^3+\left(3x^2-2x^2\right)-4=x^4-4x^3+x^2-4\)
Lời giải:
Ta thấy:
$P(0)=-2.0^2+3.0^4+0^3+0^2-\frac{1}{4}.0=0$ nên $x=0$ là nghiệm của $P(x)$
$Q(0)=0^4+3.0^2-4-4.0^3-2.0^2=-4\neq 0$
Do đó $x=0$ không phải nghiệm của $Q(x)$
Chứng tỏ đa thức M(x)=2x^4+2x^2-3 không có nghiệm
GIả sử M(x)=0=>2x^2.x^2+2x^2.1-3=0
=>2x^2(x^2+1)-3=0
Mà 2x^2 luôn chẵn,3 lẻ=>M(x) lẻ
Mà 0 chẵn=>điều giả sử vo lí=>m(x) ko nghiệm
Ta có \(2x^4\ge0\)với mọi gt của x
\(2x^2\ge0\)với mọi gt của x
=> \(2x^4+2x^2\ge0\)với mọi gt của x
=> \(2x^4+2x^2-3\ge0-3< 0\)với mọi gt của x
=> M (x) vô nghiệm (đpcm)
Do 2x^4 luôn lớn hơn hoặc bằng 0 với mọi x
2x^2 luôn lớn hơn hoặc bằng 0 với mọi x
Suy ra 2x^4 + 2x^2 luôn lớn hơn hoặc bằng 0 với mọi x
Suy ra 2x^4 +2x^2 - 3 lớn hơn hoặc bằng - 3
Mà 2x^4 và 2x^2 là số chẵn
Nên dấu bằng không thể xảy ra
Vậy đa thức vô nghiệm