Biết \(\frac{a}{a'}=\frac{b}{b'}=\frac{c}{c'}=4\); a'+b'+c' khác 0 ; a'-3b+2c' khác 0. Tính:
a) \(\frac{a-3b+2c}{a'+3b'+2c'}\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>=\frac{4}{a+2b+c}+\frac{4}{b+2a+c}+\frac{4}{a+2c+b}\) chứng minh BĐT trên biết a,b,c >0
mình không hiểu lắm. Bạn giải rõ ra được không?
1/ Biết \(\frac{a}{b}=\frac{c}{d}\), chứng minh
a) \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
b) \(\left(\frac{a-d}{c-b}\right)^4=\frac{a^4+b^4}{c^4+d^4}\)
2/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
3/ Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Chứng minh a=b=c
Mình chỉ làm bài 1a, và bài 3 thôi nhé,còn lại là bạn tự làm nhé
Bài 1:
a, Ta có : \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
\(\Rightarrow\left[\frac{a}{b}\right]^2=\left[\frac{c}{d}\right]^2=\left[\frac{a+c}{b+d}\right]^2\Rightarrow\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{(a+c)^2}{(b+d)^2}\Rightarrow\frac{a^2+c^2}{b^2+d^2}=\frac{(a+c)^2}{(b+d)^2}\)
Bài 3 : Sửa đề : Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\)
CM : a = b = c
Cách 1 : Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
vì \(a+b+c\ne0\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Do đó : \(a=b=c\).
Cách 2 : Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=m\), ta có : \(a=bm,b=cm,c=am\)
Do đó : \(a=bm=m(mc)=m\left[m(ma)\right]\)
\(\Rightarrow a=m^3a\Rightarrow m^3=1(a\ne0)\Rightarrow m=1\)
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
Cách 3 : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\Rightarrow\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}=\left[\frac{a}{b}\right]^3\Rightarrow1=\left[\frac{a}{b}\right]^3\Rightarrow\frac{a}{b}=1\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=1\Rightarrow a=b=c\)
áp dụng cô si ta có:
+)\(\frac{a^5}{b^3}+\frac{a^3}{b}\ge\frac{2a^4}{b^2};\frac{b^5}{c^3}+\frac{b^3}{c}\ge\frac{2b^4}{c^2};\frac{c^5}{a^3}+\frac{c^3}{a}\ge\frac{2c^4}{a^2}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge2\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)-\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)\)
+)\(\frac{a^4}{b^2}+a^2\ge\frac{2a^3}{b};\frac{b^4}{c^2}+b^2\ge\frac{2b^3}{c};\frac{c^4}{a^2}+c^2\ge\frac{2C^3}{a}\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge2\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)-\left(a^2+b^2+c^2\right)\)
+)\(\frac{a^3}{b}+ab\ge2a^2;\frac{b^3}{c}+bc\ge2b^2;\frac{c^3}{a}+ca\ge2c^2\)
\(\Leftrightarrow\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge\left(a^2+b^2+c^2\right)+\left(a^2+b^2+c^2-ab-bc-ca\right)\ge\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\ge\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\right)+\left(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}-a^2-b^2-c^2\right)\ge\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\)
\(\Leftrightarrow\frac{a^5}{b^3}+\frac{b^5}{c^3}+\frac{c^5}{a^3}\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)+\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}-\frac{a^3}{b}-\frac{b^3}{c}-\frac{c^3}{a}\right)\ge\left(\frac{a^4}{b^2}+\frac{b^4}{c^2}+\frac{c^4}{a^2}\right)\)
Các bạn ơi ,giúp mình với .Mình đang cần gấp.RRRRRRRRất gấp!
Bài 1: Tìm a,b,c,d biết a:b:c:d=2:3:4:5 và a+b+c+d= -42
Bài 2: Tìm a,b,c,d biết
a)\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)và a+2b-3c
b)\(\frac{a}{2}=\frac{b}{3};\frac{b}{5}=\frac{c}{4}\)và a-b+c= -49
Bài 2: Mình nghĩ câu a là a+2b-3c=-20
a) Ta có: a/2 = b/3 = c/4 = 2b/6 = 3c/12 = a + 2b - 3c/ 2 + 6 - 12 = -20/-4 = 5
a/2 = 5 => a = 2 . 5 = 10
b/3 = 5 => b = 5 . 3 = 15
c/4 = 5 => c = 5 . 4 = 20
Vậy a = 10; b = 15; c = 20
b) Ta có: a/2 = b/3 => a/10 = b/15
b/5 = c/4 => b/15 = c/12
=> a/10 = b/15 = c/12 = a - b + c / 10 - 15 + 12 = -49/7 = -7
a/10 = -7 => a = -7 . 10 = -70
b/15 = -7 => b = -7 . 15 = -105
c/12 = -7 => c = -7 . 12 = -84
Vậy a = -70; b = -105; c = -84.
Bài 1:
Ta có: a:b:c:d = 2:3:4:5
=> a/2 = b/3 = c/4 = d/5 = a+b+c+d/2+3+4+5 = -42/14 = -3
a/2 = -3 => a = -3 . 2 = -6
b/3 = -3 => b = -3 . 3 = -9
c/4 = -3 => c = -3 . 4 = -12
d/5 = -3 => d = -3 . 5 = -15
Vậy a = -6; b = -9; c = -12; d = -15.
Tìm x:\(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\)biết a+b+c=1 và \(\frac{1}{b+c}+\frac{1}{c+a}+\frac{1}{a+b}=\frac{1}{4}\)
ta có
1/b+c +1/c+a +1/a+b=1/4
=>(a+b+c)(1/b+c + 1/c+a +1/a+b)=a+b+c.1/4
=>a+b+c/b+c + a+b+c/c+a +a+b+c/a+b=1/4 (a+b+c =1)
=>1+a/b+c +1+b/c+a +1+c/a+b=1/4
=>a/b+c +b/c+a +c/a+b=-11/4
Tìm a,b,c biết
\(\frac{4}{3}=\frac{c}{4};\frac{b}{2}=\frac{c}{3}\)và a - b - c = 33
\(\frac{4}{3}=\frac{c}{4}\Rightarrow c=\frac{4}{3}.4=\frac{16}{3}\Rightarrow\frac{b}{2}=\frac{c}{3}=\frac{16}{3}:3=\frac{16}{9}\Rightarrow b=\frac{16}{9}.2=\frac{32}{9}\Rightarrow a=33+\frac{16}{3}+\frac{32}{9}=41\frac{8}{9}\)
Tìm a;b;c biết :
\(\frac{1}{a}+\frac{1}{b+c}=\frac{1}{2}\)
\(\frac{1}{b}+\frac{1}{c+a}=\frac{1}{3}\)
\(\frac{1}{c}+\frac{1}{a+b}=\frac{1}{4}\)
a) Tìm các số x và y biết rằng \(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
b) Cho 3 số a,b,c khác nhau và khác 0. Biết \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
Tính giá trị của biểu thức \(P=\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}\)
a)\(\left(x-\frac{1}{2}\right)^{2016},\left|\frac{3}{4}-y\right|\ge0\)
\(\left(x-\frac{1}{2}\right)^{2016}+\left|\frac{3}{4}-y\right|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-\frac{1}{2}\right)^{2016}=0\\\left|\frac{3}{4}-y\right|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{4}-y=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1}{2}\\y=\frac{3}{4}\end{cases}}\)
b)\(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\)
\(\Rightarrow\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
\(\Rightarrow\frac{b+c}{a}-\frac{a+c}{b}-\frac{a+b}{c}=0\)
Tìm a, b, c. Biết:
\(\frac{a}{3}=\frac{b}{5};\frac{b}{6}=\frac{c}{4}\) và a + b - c = -56
\(\frac{a}{3}=\frac{b}{5}\Leftrightarrow\frac{a}{18}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{6}=\frac{c}{4}\Leftrightarrow\frac{b}{30}=\frac{c}{20}\left(2\right)\)
\(Từ\left(1\right);\left(2\right)\Rightarrow\frac{a}{18}=\frac{b}{30}=\frac{c}{20}=\frac{a+b-c}{18+30-20}=\frac{-56}{28}=-2\)
=>a/18=-2 vậy a= -36
=>b/30=-2 vậy b=-60
=>c/20=-2 vậy c = -40
ta co
\(\frac{a}{3}=\frac{b}{5}\)\(=\frac{a}{3\cdot6}=\frac{b}{5\cdot6}=\frac{a}{18}=\frac{b}{30}\left(1\right)\)
\(\frac{b}{6}=\frac{c}{4}=\frac{b}{6\cdot5}=\frac{c}{4\cdot5}=\frac{b}{30}=\frac{c}{20}\left(2\right)\)
tu 1va 2 suy ra
\(\frac{a}{18}=\frac{b}{30}=\frac{c}{20}\)
ap dung tinh chat day ti so bang nhau ta duoc
\(\frac{a}{18}=\frac{b}{30}=\frac{c}{20}=\frac{a+b-c}{18+30-20}=\frac{-56}{28}=-2\)
tu \(\frac{a}{18}=-2\Rightarrow a=-2\cdot18=-36\)
\(\frac{b}{30}=-2\Rightarrow b=-2\cdot30=-60\)
\(\frac{c}{18}=-2\Rightarrow c=-2\cdot20=-40\)
Vậy a=-36; b=-60; c=-40
k nha
thanks
Cho a,b,c > 0.Chứng minh rằng
a,\(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)\(\ge\)\(\frac{2}{a+b}\)+\(\frac{2}{b+c}\)+\(\frac{2}{c+a}\)
b,\(\frac{4}{a}\)+\(\frac{5}{b}\)+\(\frac{3}{c}\)\(\ge\)\(4\left(\frac{3}{a+b}+\frac{2}{b+c}+\frac{1}{c+a}\right)\)
Ta chứng minh BĐT sau với các số dương:
\(\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\)
Thật vậy, BĐT tương đương: \(\dfrac{x+y}{xy}\ge\dfrac{4}{x+y}\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng)
Áp dụng:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\) ; \(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\) ; \(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\)
Cộng vế với vế:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge\dfrac{4}{a+b}+\dfrac{4}{b+c}+\dfrac{4}{c+a}\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{a+b}+\dfrac{2}{b+c}+\dfrac{2}{c+a}\)
b.
Ta có:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\Rightarrow\dfrac{3}{a}+\dfrac{3}{b}\ge\dfrac{12}{a+b}\) (1)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{4}{b+c}\Rightarrow\dfrac{2}{b}+\dfrac{2}{c}\ge\dfrac{8}{b+c}\) (2)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{4}{c+a}\) (3)
Cộng vế với vế (1); (2) và (3):
\(\dfrac{4}{a}+\dfrac{5}{b}+\dfrac{3}{c}\ge4\left(\dfrac{3}{a+b}+\dfrac{2}{b+c}+\dfrac{1}{c+a}\right)\) (đpcm)
Dấu "=" xảy ra khi \(a=b=c\)