Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Tiến Đạt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 9:52

B=(xyz)+(xyz)^2+(xyz)^3+...+(xyz)^100

=(-1)+1+(-1)+1+...+(-1)+1

=0

Hang Le Quang
Xem chi tiết
Phong Linh
Xem chi tiết
Phong Linh
2 tháng 4 2018 lúc 19:55

Ai giúp tui với coi ? 

thanks trước 

thanks trước 

Truong Minh
19 tháng 2 2021 lúc 15:38
A=100 B=0 Like nha
Khách vãng lai đã xóa
Phong Linh
Xem chi tiết
Phong Linh
2 tháng 4 2018 lúc 19:55

Ai giúp tui với coi ? 

thanks trước 

thanks trước 

Phong Linh
Xem chi tiết
Phong Linh
2 tháng 4 2018 lúc 19:55

Ai giúp tui với coi ? 

thanks trước 

thanks trước 

ttatat
Xem chi tiết
nguyen thi vang
22 tháng 1 2018 lúc 19:50

Tính giá trị biểu thức :

A = x.y + x^2.y^2 + x^3.y^3 + ... + x^ 100 .y^100 tại x = 1 ; y= 1

- Thay x = 1; y= 1 vào biểu thức ta có :

\(A=1.1+1^2.1^2+1^3.1^3+...+1^{100}.1^{100}\)

\(A=1+1+1+...+1\rightarrow\) 100 số 1

\(A=\dfrac{\left(1+1\right).100}{2}=100\)

Vậy biểu thức A nhận giác trị là 100

B= x^5 - y^5 tại x = 1; y=1

- Thay x=1; y=1 vào biểu thức ta có :

\(B=1^5-1^5=1-1=0\)

Vậy biểu thức B nhận giá trị là 0

ttatat
22 tháng 1 2018 lúc 19:40

nguyen thi vangAkai HarumaNguyễn Thanh HằngTNA AtulaPhạm Ngân HàMới vôLuân ĐàoNguyễn Thị Bích ThủyWindylê thị hương giangHồng Phúc NguyễnNguyễn Huy TúHoàng Lê Bảo NgọcVõ Đông Anh TuấnTrần Việt LinhPhương An isoyeon_Tiểubàng giảiLightning FarronAkai Haruma

Phong Linh
Xem chi tiết
Nguyễn Thị Ngọc Ánh
22 tháng 1 2018 lúc 19:42

a. Thay x=1,y=1 vào công thức ta có:

\(A=1.1+1^2.1^2+1^3.1^3+...+1^{100}.1^{100}\)

\(A=1+1+1+...+1\)

\(A=1.100=100\)

b. Thay x=1, y=1 vào công thức ta có:

\(B=1^5-1^5=1-1=0\)

chúc bn học tốt! :D

Nguyễn Danh Hoàng
22 tháng 1 2018 lúc 19:45

A=100

B=0

Yêu lớp 6B nhiều không c...
Xem chi tiết
England
Xem chi tiết
Nguyen Viet Phu
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 3 2020 lúc 19:19

a) \(\left(x-2\right)^2+2019\)

Ta có: \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow\left(x-2\right)^2+2019\ge2019\forall x\)

Dấu '=' xảy ra khi

\(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-2\right)^2+2019\) là 2019 khi x=2

b) \(\left(x-3\right)^2+\left(y-2\right)^2-2018\)

Ta có: \(\left(x-3\right)^2\ge0\forall x\)

\(\left(y-2\right)^2\ge0\forall y\)

Do đó: \(\left(x-3\right)^2+\left(y-2\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x-3\right)^2+\left(y-2\right)^2-2018\ge-2018\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\\\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-3=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(\left(x-3\right)^2+\left(y-2\right)^2-2018\) là -2018 khi x=3 và y=2

c) \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\)

Ta có: \(\left(3-x\right)^{100}\ge0\forall x\)

\(\Rightarrow-\left(3-x\right)^{100}\le0\forall x\)

Ta có: \(\left(y+2\right)^{200}\ge0\forall y\)

\(\Rightarrow-3\cdot\left(y+2\right)^{200}\le0\forall y\)

Do đó: \(-\left(3-x\right)^{100}-3\left(y+2\right)^{200}\le0\forall x,y\)

\(\Rightarrow-\left(3-x\right)^{100}-3\left(y+2\right)^{200}+2020\le2020\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(3-x\right)^{100}=0\\\left(y+2\right)^{200}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3-x=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-2\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left(3-x\right)^{100}-3\cdot\left(y+2\right)^{200}+2020\) là 2020 khi x=3 và y=-2

d) \(-\left|x-1\right|-2\left(2y-1\right)^2+100\)

Ta có: \(\left|x-1\right|\ge0\forall x\)

\(\Rightarrow-\left|x-1\right|\le0\forall x\)

Ta có: \(\left(2y-1\right)^2\ge0\forall y\)

\(\Rightarrow-2\left(2y-1\right)^2\le0\forall y\)

Do đó: \(-\left|x-1\right|-2\left(2y-1\right)^2\le0\forall x,y\)

\(\Rightarrow-\left|x-1\right|-2\left(2y-1\right)^2+100\le100\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left|x-1\right|=0\\\left(2y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\2y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\frac{1}{2}\end{matrix}\right.\)

Vậy: Giá trị lớn nhất của biểu thức \(-\left|x-1\right|-2\left(2y-1\right)^2+100\) là 100 khi x=1 và \(y=\frac{1}{2}\)

Khách vãng lai đã xóa