tìm nghiệm của đa thức :
f(x)=x^4-10X^2+9
Câu 1 : Tìm nghiệm của đa thức f(x)= x^2+2x-3
Câu 2 : Chứng minh đa thức q(x)=x^2-10x+29 không có nghiệm !
Giúp mk với !
Câu 1 :
Ta có: \(f\left(x\right)=0\Leftrightarrow x^2+2x-3=0\)
\(\Leftrightarrow\left(x+1\right)^2-4=0\)
\(\Leftrightarrow\left(x+1\right)^2=4\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=4\\x+1=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-5\end{cases}}}\)
Vậy \(x\in\left\{-5;3\right\}\)là nghiệm của đa thức f(x)
Câu 2 :
\(q\left(x\right)=x^2-10x+29\)
\(=\left(x-5\right)^2+4\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+4\ge4\forall x\)
Vậy đa thức trên ko có nghiệm
dễ mà
câu 1
f(x)=x^2+2x-3
ta có f(x)=0
suy ra x^2+2x-3=0
tương đương:x^2-x+3x-3=0
tương đương:x(x-1)+3(x-1)=0
tương đương: (x-1)(x+3)=0
tương đương: x-1=0 x=1
x+3=0 x=-3
vậy đa thức f(x) có hai nghiệm là 1 và -3
câu 2: x^2-10x+29
tương đương: x^2-5x-5x+25+4
tương đương: x(x-5)-5(x-5)+4
tương đương: (x-5)(x-5)+4
tương đương: (x-5)^2+4
vì (x-5)^2> hoặc bằng 0 với mọi x
4>0
suy ra x^2-10x+29 vô nghiệm
3 k nha bạn tốt quá mình đag cần gấp :)
tìm nghiệm của đa thức f(x)bằng 10x^2+8x+8
f(x)=5(x+4/5)^2+24/5>0
-->fx vô nghiệm
Tìm nghiệm của các đa thức sau:
1)F(x)= 9x mũ 2+8-x1
2) G(x)= x mũ 2-10x+9
3)H(x)= |2x-3|-5
4)M(x)= |5x mũ 2-10|
Cám ơn
Tìm nghiệm của đa thức -10x^3+x^2-9
Để tìm No đa thức thì ta biến đa thức
-10x^3 + x^2 - 9 = 0
<=> x có 3 nghiệm : -0,93 ; 0,51 ; 0,5166
Chứng minh các đa thức sau không có nghiệm
a, f(x)=x2-10x+27
b, g(x)=x2+2/3x+4/9
a) Ta có : \(f\left(x\right)=x^2-10x+27=\left(x^2-10+25\right)+2=\left(x-5\right)^2+2\ge2>0\)
Vậy f(x) > 0 => Vô nghiệm.
b) Tương tự : \(g\left(x\right)=x^2+\frac{2}{3}x+\frac{4}{9}=\left(x^2+2.x.\frac{1}{3}+\frac{1}{9}\right)+\frac{4}{9}-\frac{1}{9}=\left(x+\frac{1}{3}\right)^2+\frac{1}{3}\ge\frac{1}{3}>0\)
Vậy g(x) > 0 => Vô nghiệm.
a, tìm nghiệm của đa thức f(x)=32-12X
b, tìm đa thức f(x)=ax+b biết f(1)=-2 và x=2 là nghiệm của .
c,chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm biết rằng:
(x-2).P(x+5)=(x2-9).P(x+2)
a, cho f(x) = \(3^2\)-12X = 0
=> X=\(\frac{3^2-0}{12}=\frac{9}{12}=\frac{3}{4}\). Vậy X=\(\frac{3}{4}\)là nghiệm của đa thức.
b, đề chưa rõ k mình cái nha =)
a, f(x)=\(3^2\) -12x=0
=>9=12x
=>x=\(\frac{3}{4}\)
b,f(1)=a+b=-2 (1)
f(2)=2a+b=0 (2)
Từ (1) và (2)
=>f(2)-f(1)=2a+b-(a+b)=a=2=0-(-2)=2
a=2
=>a+b=0
=>b=-4
Tập nghiệm của đa thức \(f\left(x\right)=x^2+10x-56\).Tìm nghiệm của đa thức \(f\left(x\right)\)
Tập nghiệm của đa thức \(A=\left(x^2-4\right)\left(x^3+27\right)\)là ?
Nghiệm của đa thức \(f\left(x\right)\)là số a sao cho khi \(x=a\)thì \(f\left(a\right)=0\)hay \(a^2+10a-56=0\)hay \(a^2+14a-4a-46=0\)hay \(a\left(a+14\right)-4\left(a+14\right)=0\)hay \(\left(a+14\right)\left(a-4\right)=0\)hay \(\orbr{\begin{cases}a+14=0\\a-4=0\end{cases}}\)hay \(\orbr{\begin{cases}a=-14\\a=4\end{cases}}\)
Vậy nghiệm của đa thức \(f\left(x\right)\)là -14 và 4
+) Nghiệm của đa thức A là số a sao cho khi \(x=a\)thì \(A=0\)hay \(\left(a^2-4\right)\left(a^3+27\right)=0\)hay \(\orbr{\begin{cases}a^2-4=0\\a^3+27=0\end{cases}}\)hay \(\orbr{\begin{cases}a^2=4\\a^3=-27\end{cases}}\)hay \(\orbr{\begin{cases}a=\pm2\\a=-3\end{cases}}\)
Vậy nghiệm của đa thức A là -3; -2 và 2
`Answer:`
1.
`f(x)=x^2+10x-56`
`f(x)=0`
`<=>x^2+10x-56=0`
`<=>x^2+14x-4x-56=0`
`<=>x(x+14)-4(x+14)=0`
`<=>(x+14)(x-4)=0`
\(\Leftrightarrow\orbr{\begin{cases}x+14=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-14\\x=4\end{cases}}}\)
2.
Để đa thức `A` có nghiệm
`=>(x^2-4)(x^3+27)=0`
\(\Leftrightarrow\orbr{\begin{cases}x^2-4=0\\x^3+27=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^3=-27\end{cases}}\Leftrightarrow\Leftrightarrow\orbr{\begin{cases}x^2=\left(\pm2\right)^2\\x^3=\left(-3\right)^3\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=\pm2\\x=-3\end{cases}}\)
56 nhaaaaaa
Cho đa thức : f(x)= 9-x^5+4x+2x^3+x^2-7x^4
g(x)=x^5-9+2x^2+7x^4+2x^3+3x
a) Tính tổng h(x)= f(x)+g(x)
b)Tìm nghiệm của đa thức h(x)