chứng minh rẳng 1/5 + 1/5^2 + 1/5^3 +..+1/5^n < 1/4
BÀi 1: a) Chứng minh rẳng với một số nguyên dương n ta luôn có 5^n+2+3^n+2- 3^n -5^n chia hết cko 24
cho n là số tự nhiên. chứng minh A=1/5^2+2/5^3+3/5^4+4/5^5+5/5^6+....+n/5^n+1+......+11/5^12<1/16
Tính
A=1/2+1/2^2+1/2^3+...+1/2^100
Tính
B=1/2+1/2^2+1/2^3+1/2^4+...+1/2^99 - 1/2^100
Tính
C=1/2+1/2^3+1/2^5+...+1/2^99
Tính
D=2/3+8/9+26/27+...+3^n-1/3^n.Chứng minh A>n-1/2
Tính: E=4/3+10/9+28/27+...+3^39+1/3^92.Chứng minh B<100
Tính
F=5/4+5/4^2+5/4^3+...+5/4^99.Chứng minh C<5/3
Tính
G=3/1^2*2^2+5/2^2*3^2+7/3^2*4^2+...+19/9^2*10^2.Chứng Minh D<1
a) Ta có: \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Leftrightarrow2\cdot A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Leftrightarrow2\cdot A-A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow A=1-\frac{1}{2^{100}}\)
Cho A= 1/5^2 + 2/5^3 + 3/5^4 + ....... + n/5^n+1 + ....... + 11/5^12 với n thuộc N.
Chứng minh rằng A < 1/16
5A = 1/5 + 2/5^2 +3/5^3 +...+ 11/5^11
=> 4A= 1/5+1/5^2 +1/5^3 +...+1/5^11 - 11/5^12
=> 20A = 1+1/5+1/5^2+...+1/5^10 - 11/5^11
=> 16A = 1-1/5^11+11/5^12-11/5^11
Vì 1-1/5^11 < 1 ; 11/5^12 -11/5^11 < 0
=> 16A < 1
=> A < 1/16
cho 3 đơn thức \(-\frac{1}{3}x^4y^3;-\frac{3}{5}x^3y^4;\frac{1}{2}xy^3\) chứng minh rẳng chúng không thể cùng nhận giá trị âm với các giá trị x;y nào đó
a) thu gọn biểu thức sau: a= 5 - 5^2 + 5^3 - 5^4 +...- 5^98 + %^99
b) chứng minh rằng với mọi n thuộc N thì (2^n+1).(2^n+2) đều chia hết cho 3
c) chúng minh: A= 1/1^2 + 1/2^2+ 1/3^2+.....+1/99^2+ 1/100^2 < 1 3/4 (hỗn số)
Cho A=1-1/5+1/5 mũ 2-1/5 mũ 3+1/5 mũ 4-...-1/5 mũ 2017. Chứng minh biểu thức A ∉ N
Bài 1 Tìm x,y thuộc số nguyên
5/x - y/3 =1/6
Bài 2 Chứng minh
A) A= 1/4^2 + 1/6^2 + .... + 1/(2^n)^2 < 1/4
B) B= 2!/3! + 2!/4! +...+2!/n! < 1
Bài 3 Cho
C = 1/41 + 1/42 + .... + 1/80
Chứng minh 7/12 < C < 5/6
Bài 4 Tìm n thuộc số nguyên biết :
A = 19/n-1 nhân n/9 sao cho thuộc số nguyên
Bài 5 Tính
A) 1/3 + 1/3^2 + 1/3^2 + .... + 1/3^100
B) 1/5 - 1/5^2 + 1/5^3 - 1/5^4 + ..... + 1/5^99 - 1/5^100
Bài 1:
\(\dfrac{5}{x} - \dfrac{y}{3} =\dfrac{1}{6}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{y}{3}=\dfrac{5}{x}\)
\(\Rightarrow\dfrac{1}{6}+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow1+\dfrac{2y}{6}=\dfrac{5}{x}\)
\(\Rightarrow x.\left(1+2y\right)=30\)
Vì \(2y\) chẵn nên \(1+2y\) lẻ
\(\Rightarrow1+2y\in\left\{\pm1;\pm3;\pm5;\pm30\right\}\)
\(\Rightarrow x\in\left\{\pm10;\pm30;\pm6;\pm2\right\}\)
Bài 2:
\(\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{2.4}+\dfrac{1}{4.6}+\dfrac{1}{6.8}+...+\dfrac{1}{\left(2n-2\right).2n}\)
\(=\left(\dfrac{2}{2.4}+\dfrac{2}{4.6}+\dfrac{2}{6.8}+...+\dfrac{2}{\left(2n-2\right).2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{12}+...+\dfrac{1}{2n-2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\left(\dfrac{1}{2}-\dfrac{1}{2n}\right).\dfrac{1}{2}\)
\(=\dfrac{1}{4}-\dfrac{1}{2n.2}< \dfrac{1}{4}\)
\(\Rightarrow\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(đpcm\right)\)
Câu B dấu chấm than là kí hiệu gì thế bạn?
a) Cho P=5+5^2+5^3+5^4+5^5+...+5^102 .Chứng minh P:6 b) Cho A=1+4+4^2+4^3+...+4^100 Chứng minh A:5 c) Cho B = 1+2+2^2+2^3+...2^98 Chứng minh B:7 d) Cho C =1+3+3^2+3^3+...+3^104 Chứng minh C:40