tìm ngiệm của đa thức
P(x)=3x2+(-3)
cho F(x)=x+3 tìm ngiệm của đa thức F(x)
Xét \(f\left(x\right)=0\)
\(\Leftrightarrow x+3=0\)
\(\Leftrightarrow x=-3\)
Vậy, đa thức \(f\left(x\right)\)có nghiệm là -3
Đa thức \(f\left(x\right)=x+3\) có nghiệm khi :
\(x+3=0\)
\(\Leftrightarrow\)\(x=-3\)
Vậy nghiệm của đa thức \(f\left(x\right)=x+3\) là \(x=-3\)
Chúc bạn học tốt ~
Tìm ngiệm của đa thức
P(x)= x^4+x^3+x+1
Để \(P\left(x\right)\) có nghiệm <=> \(x^4+x^3+x+1=0\)
\(\Leftrightarrow\left(x^4+x\right)+\left(x^3+1\right)=0\)
\(\Leftrightarrow x\left(x^3+1\right)+\left(x^3+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x^3+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x^3=-1\end{cases}\Rightarrow}x=-1}\)
Vậy \(x=-1\) là nghiệm của đa thức \(P\left(x\right)\)
\(P_{\left(x\right)}=x^4+x^3+x+1=x^3\left(x+1\right)+\left(x+1\right)=\left(x+1\right)\left(x^3+1\right)=\left(x+1\right)^2\left(x^2+x+1\right)\)
Mà \(x^2+x+1\ne0\)
\(\Rightarrow x+1=0\Leftrightarrow x=-1\)
Tìm ngiệm của đa thức p(x)=x^3-2x+1
Cho đa thức P(x) = 2x2 + 8
a) Tìm bậc của đa thức P(x)
b) Tìm ngiệm của đa thức P(x)
a) Bậc của đa thức là số mũ của hạng tự cao nhất trong đa thức đó.Nên bậc của đa thức đó là 2
b) \(P\left(x\right)=2x^2+8\ge8>0\forall x\)
Do đó đa thức trên không có nghiệm.
Ơ bài tth nó sai chỗ nào?mấy thánh bớt spam tk đi! =_="
a)Bậc của đa thức là số mũ của hạng tự cao nhất trong đa thức đó.Nên bậc của đa thức đó là 2.
b)\(P\left(x\right)=2x^2+8\ge8>0\forall x\)
Do đó đa thức trên không có nghiệm.
Cho các đa thức sau:
f ( x ) = - 3 x 2 + 2 x 2 - x + 2 v à g ( x ) = 3 x 2 - 2 x 2 + 5 x - 3
Tìm nghiệm của đa thức f ( x ) + g ( x )
A. x = 5 4
B. x = 0
C. x = 1 4
D. x = - 1 4
Ta có f(x) + g(x) = 4x - 1. Khi đó nghiệm của đa thức tổng là x = 1/4. Chọn C
tìm ngiệm đa thức sau : x^3-x^2
ta có:x^3-x^2=0
x^2(x-1)=0
=>x^2=0 hoặc x-1=0
=>x=0 hoặc 1
cho hai đa thức p (x) =5 (x) =5x^3-3x+7-xvà Q(x)=5x^3+2x-3+2x-x^2-2
a) thu gọn hai đợn thức p(x)vàQ(x)
b) tìm đa thức M(x)=P(x)+Q(x) và n(x) = p(x) -Q(x)
c) tìm ngiệm của đa thức M(x)
a, Ta có : \(P\left(x\right)=5x^3-3x+7-x=5x^3-4x+7\)
\(Q\left(x\right)=5x^3+2x-3+2x-x^2-2=5x^3-x^2+4x-5\)
b, Ta có : \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
hay \(5x^3-4x+7+5x^3-x^2+4x-5=10x^3-x^2+2\)
Ta có ; \(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
hay \(5x^3-4x+7-5x^3+x^2-4x+5=x^2-8x+12\)
c, phải là tìm nghiệm N(x) chứ ?
ngịêm là m mà vì đề bài Q(x)=-5x^3
Tìm ngiệm của các đa thức
a, g(x)= x^3 - 2x^2 + x
b, k(x) = x^3 + 5x^2 + 6x
\(g\left(x\right)=x^3-2x^2+x\)
\(x^3-2x^2+x=x\left(x^2-2x+1\right)\)
\(\Rightarrow x\left(x^2+2x+1\right)=x\left(x-1\right)^2\)
\(g\left(x\right)=0\)
Tập nghiệm của g(x) là { 0 ; 1 }
tìm ngiệm A(x)=x^3+3^2-4x B(x)=-2x^3+3^2+4x+1
Chứng tỏ rằng x=0 là nghiệm của đa thức A(x) nhưng không là nghiệm của đa
thức B(x)
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
Bạn viết đề rõ hơn được không ạ ?
Lp 7 cái phương trình bậc 3 kia, bấm máy ra số vô tỉ
Cái j mà x = 0 là nghiệm đa thức A ? logic nhỉ !