tìm x, biết4 mu x + 4 mux+3 = 4160
Tìm x biết
4-x/-5=-5/4-x
nhanh giúp em vs ạ
\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)
\(\Leftrightarrow\left(4-x\right)\left(4-x\right)=-5\times-5\)
\(\Rightarrow\left(4-x\right)^2=25\)
\(\Rightarrow\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
\(\dfrac{4-x}{-5}=\dfrac{-5}{4-x}\)
\(\Rightarrow\left(4-x\right).\left(4-x\right)=\left(-5\right).\left(-5\right)\)
\(\Rightarrow\left(4-x\right)^2=25\)
\(\Rightarrow\left(4-x\right)^2=5^2\)
\(\Rightarrow4-x=\pm5\)
\(\Rightarrow\left[{}\begin{matrix}4-x=5\\4-x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=4-5\\x=4-\left(-5\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\\x=9\end{matrix}\right.\)
=>(4-x)^2=25
=>(x-4)^2=25
=>x-4=5 hoặc x-4=-5
=>x=-1 hoặc x=9
Tìm x :
\(4^x+4^{x+3}=4160\)
4x+4x+3=4160
=>4x+4x.43=4160
=>4x(1+64)=4160
=>65.4x=4160
=>4x=64
=>x=3
Vậy x=3
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow x=3\)
\(4^x+4^x.4^3=4160\)
\(\Leftrightarrow4^x\left(1+64\right)=4160\)
\(\Leftrightarrow4^x=4160:65\)
\(\Leftrightarrow4^x=64=4^3\)
\(\Leftrightarrow x=3\)
1)
a) 12:{390:[5.10 mu2-(5 mu3+7 mu2.x)]}=4
b) 3+2 mux-1=24-[4 mu2-(2 mu2-1)
c) (2x-6)mu2016=(2x-6)mu16
d) (x+1)+(x+2)+(x+3)+...+(x+30)=795
e) 2 mu x+2 mu x+4=272
Ai là người giải nhanh mình tick cho.Nhưng phải trả lời trước thứ 5 đấy nhé!
(3 x 4 x 2 mux 10) mux 2 chia cho 11.2 mux 13 x 4 mux 11-16 mux 9
Tìm x , biết :
4x + 4x + 3 = 4160
\(4^x+4^{x+3}=4160\)
\(4^x\times\left(1+4^3\right)=4160\)
\(4^x\times\left(1+64\right)=4160\)
\(4^x\times65=4160\)
\(4^x=\frac{4160}{65}\)
\(4^x=64\)
\(4^x=4^3\)
\(x=3\)
\(4^x+4^{x+3}=4160\)
\(\Rightarrow4^x+4^x.4^3=4160\)
\(\Rightarrow4^x.\left(1+4^3\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Vậy \(x=3\)
4 x+3 +4x =4160
Tìm x
\(4^{x+3}+4^x=4160\)
\(\Rightarrow4^x.4^3+4^x=4160\)
\(\Rightarrow4^x.\left(4^3+1\right)=4160\)
\(\Rightarrow4^x.65=4160\)
\(\Rightarrow4^x=4160:65\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
\(4^{x+3}+4^x=4160\)
\(\left(4^x\cdot4^3\right)+4^x=4160\)
\(4^x\cdot\left(4^3+1\right)=4160\)
\(4^x\cdot\left(64+1\right)=4160\)
\(4^x\cdot65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Thưa toàn thể quý vị, chào mừng các bạn đến đây
\(4^{x+3}+4^x=4160\)
\(4^x\left(4^3+1\right)=4160\)
\(4^x.65=4160\)
\(4^x=4160:65\)
\(4^x=64\)
=> x = 3
Tìm x:\(4^x\)+ \(4^{x+3}\)= 4160
=> 4x[1 + 43] = 4160
=> 4x . 65 = 4160
=> 4x = 64
=> x = 3
Ta có: 4\(^x\)+4\(^{x+3}\)=4160
\(\Rightarrow\)4\(^x\).(1+4\(^3\))=4160
\(\Rightarrow\)4\(^x\).65=4160
\(\Rightarrow\)4\(^x\)=64
\(\Rightarrow\)4\(^x\)=4\(^3\)\(\Rightarrow\)x=3
4\(^x\)+4\(^x\).64=4160
4\(^x\)(1+64)= 4160
4\(^x\)=4160:65=64
4\(^x\)=4\(^3\)
\(\Rightarrow\)x=3
Tìm x , biết:
\(4^x+4^{x+3}=4160\)
4x+4x+3=4160
\(\Rightarrow\)4x+4x.43=4160
\(\Rightarrow\)4x.(1+43)=4160
\(\Rightarrow\)4x.65=4160
\(\Rightarrow\)4x=4160:65
\(\Rightarrow\)4x=64
\(\Rightarrow\)4x=43
\(\Rightarrow\)x=3
\(4^x+4^{x+3}=4160\)
\(4^x\left(1+4^3\right)=4160\)
\(\Rightarrow4^x\cdot65=4160\)
\(\Rightarrow4^x=64\)
\(\Rightarrow4^x=4^3\)
\(\Rightarrow x=3\)
Ta làm theo kiểu đặt nhân tử chung nha :
\(4^x+4^{x+3}=4160\)
\(=>4^x\left(1+4^3\right)=4160\)
\(=>4^x.65=4160\)
\(=>4^x=64\)
\(=>x=3\)
tìm X, biết
4(x-12)-2=50
120-(3x-9)=1440:12
15-[x]=6
4(x-12)-2=50
4(x-12)=50+2
4(x-12)=52
x-12=52÷4
x-12=13
x=25
4(x-12)-2=50
4(x-12)=50+2
4(x-12)=52
x-12=52÷4
x-12=13
x=25