Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Quốc ANh
Xem chi tiết
Hồ Băng Băng
Xem chi tiết
Nguyễn Hữu Nghĩa
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 20:53

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)

mà AD+CD=AC(D nằm giữa A và C)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)

Do đó:

\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)

Vậy: BC=10cm; AD=3cm; CD=5cm

Nguyễn Lê Phước Thịnh
6 tháng 4 2021 lúc 20:55

b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)

\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)

Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)

Xét ΔCED và ΔCAB có 

\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)

\(\widehat{C}\) chung

Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)

 

Nguyễn Hạnh Kiều Trang
Xem chi tiết
lương Thị Hải Linh
Xem chi tiết
nguyễn quang minh
Xem chi tiết
lien nguyen
Xem chi tiết
Leo
26 tháng 1 2016 lúc 12:52

Đừng tin bn Thạch bạn ấy nói dối đấy

Trần Triệu Vũ
26 tháng 1 2016 lúc 12:36

Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.

GoKu Đại Chiến Super Man
26 tháng 1 2016 lúc 12:40

bạn bấm vào đúng 0 sẽ ra kết quả 

mình làm bài này rồi

phạm khánh linh
Xem chi tiết
Gaming DemonYT
21 tháng 2 2021 lúc 16:36

AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)

=> E là trọng tâm ΔΔBCD (dhnb)

=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)

 

=> DE đi qua trung điểm của BC (ĐN trung tuyến)

Mai Anh{BLINK} love BLAC...
21 tháng 2 2021 lúc 16:36

Nguyễn Lê Phước Thịnh
21 tháng 2 2021 lúc 22:36

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=8^2+6^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Phạm Thị Hà Anh
Xem chi tiết
Vũ Như Mai
22 tháng 1 2017 lúc 20:08

a) Xét tam giác ABC vuông tại A có:

      \(AB^2+AC^2=BC^2\left(pytago\right)\)

      \(8^2+6^2=BC^2\left(64+36=100\right)\)

   \(\Rightarrow BC=\sqrt{100}=10cm\)

b) Câu này viết lại đề đi