cho tam giác ABC có AB=4cm AC=8cm. trên AC lấy D sao cho AD=2cm. Chứng minh:
ABD=ACB
BC=2BD
Cho tam giác ABC có AB=8cm , AC=12cm. Trên cạnh AB lấy điểm D sao cho BD=2cm, trên cạnh AC lấy điểm E sao cho AE=9cm
a)Tính các tỉ số AE/AD ; AD/AC
b)Chứng minh tam giác ADE đồng dạng với tam giác ABC
c)Đường phân giác của BAC cắt BC tại I.Chứng minh IB.AE=IC.AD
cho tam giác ABC có góc A= 90độ, AB=8cm, AC=6cm
a. Tính BC
b. Trên cạnh AC lấy điểm E sao cho AE=2cm, trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh tam giác BEC= tam giác DEC
Cho tam giác ABC vuông tại A, có AB = 6cm, AC = 8cm .Kẻ đường phân giác BD của góc ABC (D thuộc AC ) a)Tính BC, AD, DC b)Trên BC lấy điểm E sao cho CE= 4cm. Chứng minh tam giác CED đồng dạng với tam giác CAB c)Chứng minh ED= AD
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AD}{6}=\dfrac{1}{2}\\\dfrac{CD}{10}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AD=3\left(cm\right)\\CD=5\left(cm\right)\end{matrix}\right.\)
Vậy: BC=10cm; AD=3cm; CD=5cm
b) Ta có: \(\dfrac{CE}{CA}=\dfrac{4}{8}=\dfrac{1}{2}\)
\(\dfrac{CD}{CB}=\dfrac{5}{10}=\dfrac{1}{2}\)
Do đó: \(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)
Xét ΔCED và ΔCAB có
\(\dfrac{CE}{CA}=\dfrac{CD}{CB}\)(cmt)
\(\widehat{C}\) chung
Do đó: ΔCED\(\sim\)ΔCAB(c-g-c)
Cho tam giác ABC có góc A = 90 độ; AB=8cm; AC=6cm.
a, Tính BC
b, Trên AC lấy E sao cho AE= 2cm; trên tia đối của AB lấy D sao cho AD = AB. Chứng minh: Tam giác BEC = Tam giác DEC.
c, CM: DE đi qua trung điểm cạnh BC
Cho tam giác ABC có A=90độ AB =8cm AC= 6 cm
a, trên cạnh AC lấy điểm E sao cho AE =2cm trên tia đối của tia AB lấy điểm D sao cho AD =AB. Chứng minh tam giác BEC=tam giác DEC
b,chứng minh DE đi qua trung điểm cạnh BC
cho tam giác ABC có A =90 độ , AB =8cm , AC = 6cm
a,tính BC
b, trên cạnh AC lấy diểm E SAO CHO AE=2cm ; trên tia đối của tia AB lấy điểm D sao cho AD=AB . chứng minh tam giác BEC = tam giác DEC
CHỨNG MINH DE đi qua trung điểm cạnh BC
Cho tam giác ABC vuông tai A có AB=8cm, AC=6cm
a) Tính BC
b) Trên cạnh AC lấy điểm E sao cho AE=2cm, trên tia đối của tia AB lấy điểm D sao cho AD=AB. Chứng minh: tam giác BEC= tam giác DEC
c) Chứng minh: DE đi qua trung điểm của cạnh D
Dễ mà p áp dụng Pytago câu a, còn mấy câu kia mìh lm` biến vẽ hìh Cm qá p ơi.
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Cho tam giác ABC có góc A = 90 0 , AB = 8cm, AC = 6cm .
a) Tính BC
b) Trên cạnh AC lấy điểm E sao cho AE = 2cm; trên tia đối của tia AB lấy điểm D sao cho AD = AB. Chứng minh ∆BEC = ∆DEC .
c) Chứng minh DE đi qua trung điểm cạnh BC
AEAC=26=13AEAC=26=13 (AE = 2cm, AC = 6cm)
=> E là trọng tâm ΔΔBCD (dhnb)
=> DE là trung tuyến ΔΔBCD (ĐN trọng tâm)
=> DE đi qua trung điểm của BC (ĐN trung tuyến)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=8^2+6^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
cho tam giác abc vuông tại a có ab=8cm ac=6cm
a) tình bc
b)trên cạnh ac lấy điêm e sao chom ae=2cm trên tia đối của tia ab lấy điểm d sao cho ad=ab chứng minh tam giác bea0tam giác dea
a) Xét tam giác ABC vuông tại A có:
\(AB^2+AC^2=BC^2\left(pytago\right)\)
\(8^2+6^2=BC^2\left(64+36=100\right)\)
\(\Rightarrow BC=\sqrt{100}=10cm\)
b) Câu này viết lại đề đi