Bài 2. Cho ∆ABC, lấy điểm D trong tam giác thỏa mãn AB = AD. Đường thẳng BD cắt cạnh AC tại E. Gọi O là trung điểm của BD.
a) Chứng minh AO vuông góc với BD.
b) Chứng minh AE > AO; AC > AB.
Cho tam giác ABC cân tại A trên hai cạnh AB và AC lấy hai điểm D và E sao cho AD=AE gọi O là giao điểm của hai đoạn thẳng BE và CD. Chứng minh tam giác OBC cân.Chứng minh điểm O cách đều hai cạnh AB và AC. CHứng minh AO vuông góc với BC tại trung điểm BC.
(^-^'')
CẦN GIẢI GẤP ĐỐNG BÀI NÀY
(Có cả hình ở mỗi bài nha!)
Câu 1: Cho tam giác ABC có AB = AC. Kẻ BD vuông góc với AC (D∈AC),CE vuông góc với AB ( E ∈ AB ). Gọi O là giao điểm của BD và CE. Chứng minh :
a) BD = CE
b) Tam giác OEB bằng tam giác ODC
c) AO là tia phân giác của góc BAC
d) Gọi M là trung điểm của BC. Chứng minh : A,O,M thẳng hàng.
Câu 2 :
Câu 3 :Cho tam giác ABC có AC>AB. Nối A với trung điểm M của BC. Trên tia AM lấy điểm E sao cho M là trung điểm của AE, Nối C với E.
a) So sánh AB và CE
b) Chứng minh : \(\frac{AC-AB}{2}< AM< \frac{AC+AB}{2}.\)
Câu 4: Cho ∆ABC vuông tại C có góc A = 60o. Tia phân giác của góc BAC cắt BC ở E. Kẻ EK ⊥ AB( K ∈ AB ).Kẻ BD ⊥ AE( D ∈ AE ). Chứng minh:
a) AC=AK và AE ⊥ CK
b) KA=KB
c) EB>AC
d) Ba đường thẳng AC,BD,KE đồng quy.
Câu 5: Cho ∆ABC có AB<AC. Trên cạnh AC lấy điểm D sao cho CD=AB. Hai đường trung trực của BD và AC cắt nhau tại E. Chứng minh rằng:
a)∆AEB = ∆CED
b) AE là tia phân giác trong tại đỉnh A của ∆ABC
Câu 2 : Chọn đáp án đúng:
Cho tam giác ABC, trung tuyến AM. Gọi G là trọng tâm của tam giác ABC thì :
A )\(\frac{AM}{AB}=\frac{1}{2}\)
B )\(\frac{AG}{GM}=3\)
C ) \(\frac{GM}{AM}=\frac{1}{3}\)
D ) \(\frac{GM}{AG}=\frac{2}{3}\)
Cho tam giác ABC vuông ở A, AB=6cm, AC=9cm . trên cạnh AB lấy điểm D sao cho AD/BD=1/2. Từ D kẻ đường thẳng song song với BC cắt AC tại E. a, tính AD và AE. b, tính diện tích của tứ giác BDEC. c, BE cắt CD ở O. Chứng minh tia AO đi qua trung điểm của BC Làm giúp mk câu c vs
Cho tam giác ABC có AB= AC. Lấy điểm D trên cạnh AB, điểm E trên cạnh AC sao cho AD = AE
a) Chứng minh BE = CD
b) Gọi O là giao điểm của BE và CD. Chứng minh rằng tam giác BOD = tam giác COE
c) Chứng minh AO là tia phân giác góc A
d) AO cắt BC tại H, chứng minh AH vuông góc BC
AI GIẢI NHANH VÀ ĐÚNG MIK SẼ TICK
Cm: a) Xét t/giác ABE và t/giác ACD
có: AB = AC (gt)
\(\widehat{A}\) :chung
AE = AD (gt)
=> t/giác ABE = t/giác ACD (c.g.c)
=> BE = CD (2 cạnh t/ứng)
b)Ta có: AD + DB = AB
AE + EC = AC
mà AD = AE (gt) ; AB = AC (gt)
=> BD = EC
Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)
\(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)
mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)
=> \(\widehat{BDC}=\widehat{BEC}\)
Xét t/giác BOD và t/giác COE
có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)
BD = EC (cmt)
\(\widehat{BDO}=\widehat{OEC}\) (cmt)
=> t/giác BOD = t/giác COE (g.c.g)
c) Xét t/giác ABO và t/giác ACO
có: AB = AC (gT)
OB = OC (vì t/giác BOD = t/giác COE)
AO : chung
=> t/giác ABO = t/giác ACO (c.c.c)
=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)
=> AO là tia p/giác của \(\widehat{A}\)
d) Xét t/giác ABH và t/giác ACH
có: AB = AC (gt)
\(\widehat{BAH}=\widehat{CAH}\)(cmt)
AH : chung
=> t/giác ABH = t/giác ACH (c.g.c)
=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)
Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)
=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)
Cho tam giác ABC cân tại A có cạnh đáy BC = 6cm, đường cao AH = 6cm.
a) Chứng minh: HB = HC.b) Tính AB và AC. So sánh các góc của tam giácABC.c) Trên tia AH lấy điểm E sao cho H là trung điểm AE. Qua E vẽ đường thẳng vuông góc với AE, đường thẳng này cắt tia AC tại D. Chứng minh: AC = CE = CD.d) Vẽ trung tuyến CI của d Gọi O là giao điểm của IH và EC. Đoạn thẳng AO cắt BC tại G. Chứng minh: BC = 6HGCho tam giác ABC vuông ở A, AB=6cm, AC=9cm . trên cạnh AB lấy điểm D sao cho AD/BD=1/2. Từ D kẻ đường thẳng song song với BC cắt AC tại E.
a, tính AD và AE.
b, tính diện tích của tứ giác BDEC. c, BE cắt CD ở O. Chứng minh tia AO đi qua trung điểm của BC
Cho ABC, AB < AC. Trên cạnh AC lấy điểm D sao cho AD = AB. Gọi E là trung điểm của BD. Tia AE cắt BC tại F
a) Chứng minh AEB = AED.
b. Chứng minh FB = FD
c) Qua C Kẻ đường thẳng vuông góc với đường thẳng AE tại G và cắt đường thẳng AB tại H. Chứng minh BD//CH và BDF=FCH
d) Chứng minh 3 điểm H; F; D thẳng hàng
Cho tam giác ABC có AB=AC=5cm, BC=8cm. Kẻ AH vuông góc với BC (H thuộc BC)
a, Chứng minh: HB=HC và BAH=CAH
b, Tính độ dài AH
c, Kẻ HD vuông góc với AB (D thuộc AB) , kẻ HE vuông góc với AC (E thuộc AC). Chứng minh tam giác HDE là tam giác cân
Bài 3: Cho tam giác ABC cân tại A. Trên tia đối của BC lấy điểm M, trên tia đối của CB lấy N sao cho BM=CN
a, Chứng minh: tam giác ABM = tam giác ACN
b, Kẻ BH vuông góc với AM, CK vuông góc với AN( H thuộc AM,K thuộc AN). Chứng minh : AH=AK
c, Gọi O là giao điểm của HB và KC. Tam giác OBC là tam giác gì? Vì sao?
Bài 4: Cho tam giác ABC, kẻ BE vuông góc với AC và CF vuông góc với AB. Biết BE=CF=8 cm. Độ dài các đoạn thẳng BF và BC tỉ lệ với 3 và 5.
a, Chứng minh tam giác ABC là tam giác cân
b, Tính độ dài cạnh đáy BC
c, BE và CF cắt nhau tại O. Nối OA và EF. Chứng minh đường thẳng OA là trung trực của đoạn thẳng EF
Bài 5 : Cho tam giác ABC vuông tại A, BD là tia phân giác của góc ABC (D thuộc AC). Từ D kẻ DE vuông góc với BC tại E. Gọi I là giao điểm của AE và BD. Chứng minh:
a, Tam giác ADB= tam giác EDB
b, BD là đường trung trực của AE
c, Tam giác EDC vuông cân
d, Lấy F thuộc tia đối của tia AB sao cho AF=EC.Chứng minh 3 điểm E, D, F thẳng hàng
Bài 6: Cho tam giác MNP cân tại M. Trên cạnh MN lấy điểm E, trên cạnh MP lấy điểm F sao cho ME=MF. Gọi S là giao điểm của NF và PE. Chứng minh
a, Tam giác MNF= tam giác MPE
b, Tam giác NSE= tam giác PSE
c, EF // NP
d, Lấy K là trung điểm của NP. Chứng minh ba điểm M, S, K thẳng hàng
Bài 7: Cho tam giác ABC vuông tại A. Trên BC lấy E sao cho BE=AB. Qua E kẻ đường thẳng vuông góc với BC cắt AC tại D
a, Chứng minh AD=AE và góc ABD= góc EBD
b, Lấy điểm F thuộc tia đối của tia AB sao cho AF=EC. Chứng minh tam giác DFC cân
c, Gọi O là giao điểm của BD và AE. Chứng minh BD là đường trung trực của AE
d, Chứng minh 3 điểm F, D,E thẳng hàng
Mình đang cần gấp
Bài 3:
a: Xét ΔABM và ΔACN có
AB=AC
góc ABM=góc ACN
BM=CN
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc BAH=góc CAK
Do đó; ΔAHB=ΔAKC
Suy ra: AH=AK và BH=CK
c: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có
MB=CN
góc M=góc N
Do đó ΔHBM=ΔKCN
Suy ra: góc HBM=góc KCN
=>góc OBC=góc OCB
hay ΔOBC can tại O