Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
võ hoàng ngọc hà
Xem chi tiết
Lê Minh Anh
7 tháng 9 2016 lúc 20:04

a.\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\Rightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Rightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)

Mà: \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\Rightarrow x+1=0\Rightarrow x=-1\)

b.

\(\frac{x+4}{1990}+\frac{x+3}{1991}=\frac{x+2}{1992}+\frac{x+1}{1993}\Rightarrow2+\frac{x+4}{1990}+\frac{x+3}{1991}=2+\frac{x+2}{1992}+\frac{x+1}{1993}\)

\(\Rightarrow\left(1+\frac{x+4}{1990}\right)+\left(1+\frac{x+3}{1991}\right)=\left(1+\frac{x+2}{1992}\right)+\left(1+\frac{x+1}{1993}\right)\)

\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}=\frac{x+1994}{1992}+\frac{x+1994}{1993}\)

\(\Rightarrow\frac{x+1994}{1990}+\frac{x+1994}{1991}-\frac{x+1994}{1992}-\frac{x+1994}{1993}=0\)

\(\Rightarrow\left(x+1994\right)\left(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\right)=0\)

\(\frac{1}{1990}+\frac{1}{1991}-\frac{1}{1992}-\frac{1}{1993}\ne0\Rightarrow x+1994=0\Rightarrow x=-1994\)

Lưu Minh Trí
Xem chi tiết
Phạm Hoàng Hải
Xem chi tiết
Nguyen Thi Thanh Thao
Xem chi tiết
Nguyễn Đình Dũng
9 tháng 11 2016 lúc 6:02

a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)

<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)

<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)

<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)

<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)

<=> x = 2010

Thư Nguyễn Nguyễn
14 tháng 4 2017 lúc 20:47

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)\)

Ta thấy : \(\left|x-1\right|\ge0;\left|x-2\right|\ge0;\left|x-3\right|\ge0\)

=> \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge0\)

=> 4 ( x - 4 ) \(\ge0\). Mà 4 > 0 => \(x-4\ge0=>x\ge4\)hay

\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)=>x-1+x-2+x-3=4\left(x-4\right)\) => 3x - 6 = 4x - 16

=> -6+16 = 4x - 3x => x = 10

Phạm Hoàng Hải
Xem chi tiết
nguyen the thang
Xem chi tiết
Phạm Hoàng Hải
Xem chi tiết
Phạm Văn Cường
Xem chi tiết
Phùng Minh Quân
12 tháng 4 2018 lúc 15:52

Ta có : 

\(\frac{x+1}{49}+\frac{x+2}{48}+\frac{x+3}{47}+\frac{x+4}{46}+\frac{x+5}{45}=-5\)

\(\Leftrightarrow\)\(\left(\frac{x+1}{49}+1\right)+\left(\frac{x+2}{48}+1\right)+\left(\frac{x+3}{47}+1\right)+\left(\frac{x+4}{46}+1\right)+\left(\frac{x+5}{45}+1\right)=-5+5\)

\(\Leftrightarrow\)\(\frac{x+50}{49}+\frac{x+50}{48}+\frac{x+50}{47}+\frac{x+50}{46}+\frac{x+50}{45}=0\)

\(\Leftrightarrow\)\(\left(x+50\right)\left(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\right)=0\)

Vì \(\frac{1}{49}+\frac{1}{48}+\frac{1}{47}+\frac{1}{46}+\frac{1}{45}\ne0\)

Nên \(x+50=0\)

\(\Rightarrow\)\(x=-50\)

Vậy \(x=-50\)

Chúc bạn học tốt ~ 

Tran Thi Tam Phuc
Xem chi tiết
Nguyễn Huy Hải
10 tháng 10 2015 lúc 20:21

\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)

\(\Rightarrow\left(\frac{x+4}{2000}+1\right)+\left(\frac{x+3}{2001}+1\right)=\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+1}{2003}+1\right)\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)

\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)

\(\left(x+2004\right).\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)

Vì \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)

\(\Rightarrow x+2004=0\)

\(x=0-2004\)

\(x=-2004\)