a) \(\frac{x-1}{2009}+\frac{x-2}{2008}=\frac{x-3}{2007}+\frac{x-4}{2006}\)
<=> \(\left(\frac{x-1}{2009}-1\right)+\left(\frac{x-2}{2008}-1\right)-\left(\frac{x-3}{2007}-1\right)-\left(\frac{x-4}{2006}-1\right)=0\)
<=> \(\frac{x-2010}{2009}+\frac{x-2010}{2008}-\frac{x-2010}{2007}-\frac{x-2010}{2006}=0\)
<=> \(\left(x-2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\right)=0\)
<=> x - 2010 = 0 Vì \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}\ne0\)
<=> x = 2010
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)\)
Ta thấy : \(\left|x-1\right|\ge0;\left|x-2\right|\ge0;\left|x-3\right|\ge0\)
=> \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\ge0\)
=> 4 ( x - 4 ) \(\ge0\). Mà 4 > 0 => \(x-4\ge0=>x\ge4\)hay
\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|=4\left(x-4\right)=>x-1+x-2+x-3=4\left(x-4\right)\) => 3x - 6 = 4x - 16
=> -6+16 = 4x - 3x => x = 10