cho A \(\frac{n+1}{n-3}\)
tìm n để A là phân số tối giản
a) chứng minh phân số sau là tối giản \(\frac{3n-2}{4n-3}\)
b) cho A=\(\frac{n+1}{n-3}\)
+) tìm n để A là phân số
+) tim n de A la so nguyen
+) tìm n để A là phân số tối giản
a) gọi D là UCLN(3n-2;4n-3)
\(\Rightarrow\)\(\hept{\begin{cases}3n-2\\4n-3\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}4\left(3n-2\right)\\3\left(4n-3\right)\end{cases}}\)chia hết cho D \(\Rightarrow\)\(\hept{\begin{cases}12n-8\\12n-9\end{cases}}\)chia hết cho D
\(\Rightarrow\)[(12n-9)-(12n-8)] chia hết cho D
\(\Rightarrow\)(12n-9-12n+8) chia hết cho D
\(\Rightarrow\)-1 chia hết cho D => D \(\in\) U(1) =>D \(\in\){1;-1}
hay UCLN(3n-2;4n-3) \(\in\){1;-1}
chứng minh \(\frac{3n-2}{4n-3}\)là phân số tối giản
b) +) để A là phân số thì n-3\(\ne\)0
=>n\(\ne\)3
+) ta có \(\frac{n+1}{n-3}\)= \(\frac{n-3+4}{n-3}\)= 1 + \(\frac{4}{n-3}\)
để A là số nguyên thì \(\frac{4}{n-3}\) cũng phải là số nguyên
=> 4 chia hết n-3
=> n-3 \(\in\)U(4)
mà U(4) = {-1;-2;-4;1;2;4}
ta có bảng
n-3 | -1 | -2 | -4 | 1 | 2 | 4 |
n | 2 | 1 | -1 | 4 | 5 | 7 |
vậy n \(\in\){2;1;-1;4;5;7} thì A là số nguyên
cho phân số A=\(\frac{n+1}{n+3}\)(n E z,n khác 3) .Tìm n để A là phân số tối giản
Cho phân số \(A=\frac{n+1}{n-3}\)(n thuộc Z)
a, Tìm n để A là phân số
b, Tìm n để A là phân số tối giản
c, Tìm n để A có giá trị lớn nhất
Ta có : n + 1 chai hết cho n - 3
<=> n - 3 + 4 chia hết cho n - 3
=> 4 chia hết cho n - 3
=> n - 3 thuộc Ư(4) = {-4;-2;-1;1;2;4}
Ta có bảng :
n - 3 | -4 | -2 | -1 | 1 | 2 | 4 |
n | -1 | 1 | 2 | 4 | 5 | 7 |
a) n = 4;5;7
b) n = 4
c) n = 7
Chúc bạn học tốt !!!
Cho phân số A=\(\frac{n+1}{n-3}\)( n thuộc Z)
a) Tìm n để A là phân số.
b) Tìm n để A là phân số tối giản.
c) Tìm n để A có giá trị lớn nhất.
a) để n là phân số thì n-3 khác 0 nên n khác 3
vậy n là mọi số nguyên khác 3
b) n lẻ
c) để A lớn nhất thì n-3 sẽ nhỏ nhất nên n-3=1 vậy n=4
k nha bạn
k cho mình mình k lại
Cho: \(A=\frac{-3}{n+2}\)
a)Tìm số nguyên n để A là phân số tối giản? ( PS tối giản hay là PS không rút gọn được nữa là PS mà tử và mẫu chỉ có ước chung là 1 và -1)
b) Tìm số nguyên n để A là phân số rút gọn được?
c) Tìm số nguyên n để A là số nguyên tố
Cho phân số A=n+1/n+3(n€Z, n khác 3)
Tìm n để A là phân số tối giản
Chứng tỏ 12n+1/30n+2 là phấn số tối giản
1. Để A tối giản thì:
(n + 1, n + 3) = 1
Gọi d là ƯC nguyên tố của n + 1 và n + 3
=> n + 3 - n - 1 chia hết cho d
=> 2 chia hết cho d
Mà d nguyên tố
=> d = 2
Tìm n để n + 1 chia hết cho d; n + 3 chia hết cho 2
Vì n + 3 = n + 1 + 2 nên n + 3 chia hết cho 2 thì n + 1 chia hết cho 2
=> n + 3 = 2k (k thuộc Z)
=> n = 2k - 3
Vậy n khác 2k - 3 thì A tối giản.
2. 12n + 1 / 30n + 2 tối giản
=> (12n + 1, 30n + 2) = 1
Gọi ƯCLN (12n + 1, 30n + 2) = d
=> 12n + 1 chia hết cho d => 5.(12n + 1) = 60n + 5 chia hết cho d
=> 30n + 2 chia hết cho d => 2.(30n + 2) = 60n + 4 chia hết cho d
=> 60n + 5 - 60n - 4 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy p/số trên tối giản.
Cho phân số A= \(\frac{n-5}{n+1}\)
a) Tìm n để A là số nguyên?
b) Tìm n để A là phân số tối giản?
a) n - 5 / n + 1
=> n + 1 - 6 / n + 1
=> 6 / n + 1
=> n + 1 thuộc Ư(6) = {1;2;3;6;-1;-2;-3;-6}
b) A tối giản => bỏ số âm
A cô thể thuộc {1;2;3;6}
Vì 1 - 5 là số âm => bỏ 1
Vì 2 - 5 âm => bỏ 2
Vì 3 - 5 âm => bỏ 5
Vậy để A tối giản => n = 6
tớ quên mất điều kiện là: (n thuộc Z và n khác -1)
cho phân số \(A=\frac{n+1}{n-3}\)
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
100 - 100 + 666 - 555 + 111 - 111 + 111 - 222
= 0 + 666 - 555 + 111 - 111 + 111 - 222
= 666 - 555 + 111 - 111 + 111 - 222
= 111 + 111 - 111 + 111 - 222
= 222 - 111 + 111 - 222
= 111 + 111 - 222
= 222 - 222
= 0
Chuc ban hoc tot
cho phân số $A=\frac{n+1}{n-3}$
a) Tìm n để A có giá trị nguyên
b) Tìm n để A là phân số tối giản
Cho A= \(\frac{2n+1}{n-3}+\frac{3n-5}{n-3}-\frac{4n-5}{n-3}\). Tìm n để A là phân số tối giản