Cho \(a^2+b^2+c^2=3\)
CM: \(ab+bc+ca+a+b+c\le6\)
Cho a, b, c là số thực thảo mãn \(a^2+b^2+c^2=3\)\(ab+bc+ca+a+b+c\le6\). Cmr:
Cho a, b, c là các số thực thỏa mãn \(a^2+b^2+c^2=3\). CMR: \(ab+bc+ca+a+b+c\le6\)
Với mọi số thực a;b;c ta luôn có:
\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (1)
Tương tự: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)
\(\Leftrightarrow a^2+b^2+c^2+3\ge2a+2b+2c\) (2)
Cộng vế với vế (1) và (2)
\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)
\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho các số thực a,b,c thỏa mãn điều kiện : \(a^2+b^2+c^2=3\)
CMR : \(ab+bc+ca+a+b+c\le6\)
Bài này mình nhặt được trên fb
Ta có
\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)
\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)
\(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)
\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)
\(=>=3+\frac{3+3}{2}=6\)
=> dpcm
cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm
(a - b)^2 = a^2 - 2ab + b^2 > 0
(b - c)^2 = b^2 - 2bc + c^2 > 0
(c - a)^2 = c^2 - 2ac + a^2 > 0
=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac
=> 6 > 2ab + 2bc + 2ac
=> 3 > ab + bc + ac (1)
(a - 1)^2 = a^2 - 2a + 1 > 0
(b - 1)^2 = b^2 - 2b + 1 > 0
(c - 1)^2 = c^2 - 2c + 1 > 0
=> a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c
=> 6 > 2a + 2b + 2c
=> 3 > a + b + c và (1)
=> 6 > ab + ac + bc + a + b + c
Đảo lại của Đề vào 10 Hà Nội 2013-2014
Dễ thấy 2 điều như thế này:
\(a^2+b^2+c^2\ge ab+bc+ca\)
\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\Rightarrow3\ge a+b+c\)
\(\Rightarrow a^2+b^2+c^2+3\ge ab+bc+ca+a+b+c\)
\(\Rightarrow ab+bc+ca+a+b+c\le6\) ( đpcm )
cho 3 số thực không âm cm:
ab(b^2+bc+ca)+bc(c^2+ca+ab)+ca(a^2+ab+bc)<(ab+bc+ca)(a^2+b^2+c^2)
Cho 3 đoạn thẳng AB,BC,CA trong đó AB=2 cm , BC=3 cm, CA=4 cm
a) Điểm B có giữa 2 điểm A và C ko ?
b) 3 điểm A,B,C có thẳng hàng ko ? Vì sao ?
Cho (a+b+c)^2=3(ab+bc+ca) CM a=b=c
\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3bc-3ac=0\)
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
cho 3 số không âm a,b,c. Cm:
ab(b2+ bc+ ca) + bc(c2+ ca+ ab) + ca(a2 + ab + bc) \(\le\) (ab + bc + ca) (a2 + b2 + c2 )
\(BĐT\Leftrightarrow\)∑\(\left(\frac{b^2}{c}+a+b\right)\)\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a^2+b^2+c^2\right)\)
\(\Leftrightarrow a+b+c\le\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)
\(\Leftrightarrow\frac{\left(a-c\right)^2}{c}+\frac{\left(b-a\right)^2}{a}+\frac{\left(c-b\right)^2}{b}\ge0\)
cho a;b;c là 3 cạnh của 1 tam giác
cm: ab +bc+ca=<a2+b2+c2 <2(ab+bc+ca)
ab+bc+ca \(\le\) a^2+b^2+c^2
<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0
<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng
a^2+b^2+c^2 < 2(ab+bc+ca)
<=> a^2+b^2+c^2-2ab-2bc-2ca < 0
<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0
<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng
Ta co đpcm
a,b,c > 0
Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca
Cộng theo vế : 2(a2+b2+c2) \(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca
theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2
b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2
Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2
cho (a+b+c)^2=3(ab+bc+ca) . Cm : a=b=c
\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
=> a^2 + b^2 + c^2 +2ac+2bc+2ab = 3(ab+bc+ab)
=> a^2 + b^2 + c^2 = ac+ab+bc
=> a^2 + b^2 + c^2 -ac-ab-bc =0
=>a^2 - ac + b^2 -ab +c^2 -bc =0
=> a(a-c) + b(b-a) + c(c-b) = 0
=> a(a-c)=0 , b(b-a)=0 , c(c-b)=0
=> a=0 a-c=0 => a=c
b=0 b-a =0 => b=a
c=0 c-b=0=> c=b
=> a=b=c
WHO CAN HEPL ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!