Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Xuan Xuannajimex
Xem chi tiết
Xuan Xuannajimex
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 13:35

Với mọi số thực a;b;c ta luôn có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)

\(\Leftrightarrow2a^2+2b^2+2c^2\ge2ab+2bc+2ca\) (1)

Tương tự: \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow a^2+b^2+c^2+3\ge2a+2b+2c\) (2)

Cộng vế với vế (1) và (2)

\(\Rightarrow3\left(a^2+b^2+c^2\right)+3\ge2\left(ab+bc+ca+a+b+c\right)\)

\(\Leftrightarrow ab+bc+ca+a+b+c\le6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Phan Nghĩa
Xem chi tiết
IS
23 tháng 6 2020 lúc 20:32

Ta có 

\(x^2+y^2\ge2xy\)hay\(xy\le\frac{x^2+y^2}{2}\left(\forall x,y\right)\)

\(=>ab+bc+ca+a+b+c\le\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}+\frac{a^2+1}{2}\)

                                                                            \(+\frac{b^2+1}{2}+\frac{c^2+1}{2}\)

\(=a^2+b^2+c^2+\frac{a^2+b^2+c^2+3}{2}\left(do\right)a^2+b^2+c^2=3\)

\(=>=3+\frac{3+3}{2}=6\)

=> dpcm

cậu zô trang tuyển tập những toán hay nhá. Nơi đó nhiều bài hay lắm

Khách vãng lai đã xóa
Jennie Kim
23 tháng 6 2020 lúc 20:47

(a - b)^2 = a^2 - 2ab + b^2 > 0

(b - c)^2 = b^2 - 2bc + c^2 > 0

(c - a)^2 = c^2 - 2ac + a^2 > 0

=> 2a^2 + 2b^2 + 2c^2 > 2ab + 2bc + 2ac 

=> 6 > 2ab + 2bc + 2ac

=> 3 > ab + bc + ac    (1)

(a - 1)^2 = a^2 - 2a + 1 > 0

(b - 1)^2 = b^2 - 2b + 1 > 0

(c - 1)^2 = c^2 - 2c + 1 > 0

=>  a^2 + b^2 + c^2 + 1 + 1 + 1 > 2a + 2b + 2c

=> 6 > 2a + 2b + 2c

=> 3 > a + b + c   và (1)

=> 6 > ab + ac + bc + a + b + c

Khách vãng lai đã xóa
zZz Cool Kid_new zZz
23 tháng 6 2020 lúc 20:58

Đảo lại của Đề vào 10 Hà Nội 2013-2014

Dễ thấy 2 điều như thế này:

\(a^2+b^2+c^2\ge ab+bc+ca\)

\(\left(a^2+1\right)+\left(b^2+1\right)+\left(c^2+1\right)\ge2a+2b+2c\Rightarrow3\ge a+b+c\)

\(\Rightarrow a^2+b^2+c^2+3\ge ab+bc+ca+a+b+c\)

\(\Rightarrow ab+bc+ca+a+b+c\le6\) ( đpcm )

Khách vãng lai đã xóa
nguyễn quốc khánh
Xem chi tiết
Anh Nguyễn
Xem chi tiết
123456
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 1 2022 lúc 23:08

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc-3ab-3bc-3ac=0\)

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

=>a=b=c

Cao Xuân Sơn
Xem chi tiết
Lầy Văn Lội
1 tháng 5 2018 lúc 0:11

\(BĐT\Leftrightarrow\)\(\left(\frac{b^2}{c}+a+b\right)\)\(\le\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\left(a^2+b^2+c^2\right)\)

\(\Leftrightarrow a+b+c\le\frac{a^2}{c}+\frac{b^2}{a}+\frac{c^2}{b}\)

\(\Leftrightarrow\frac{\left(a-c\right)^2}{c}+\frac{\left(b-a\right)^2}{a}+\frac{\left(c-b\right)^2}{b}\ge0\)

Trịnh Xuân Diện
Xem chi tiết
soyeon_Tiểu bàng giải
31 tháng 1 2017 lúc 20:41

ab+bc+ca \(\le\) a^2+b^2+c^2

<=> a^2+b^2+c^2-ab-bc-ca \(\ge\) 0

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca \(\ge\) 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) \(\ge\)0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 \(\ge\)0, luôn đúng

a^2+b^2+c^2 < 2(ab+bc+ca)

<=> a^2+b^2+c^2-2ab-2bc-2ca < 0

<=> (a^2+b^2-2ab) + (b^2+c^2-2bc) + (c^2+a^2-2ca) - a^2 - b^2 - c^2 < 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 - a^2 - b^2 - c^2 < 0, luôn đúng

Ta co đpcm

Hoàng Phúc
31 tháng 1 2017 lúc 21:11

a,b,c > 0

Áp dụng bđt AM-GM : a2+b2 \(\ge\) 2ab , b2+c2 \(\ge\) 2bc , c2+a2 \(\ge\) 2ca 

Cộng theo vế : 2(a2+b2+c2\(\ge\) 2(ab+bc+ac) => a2+b2+c2 \(\ge\) ab+bc+ca

theo bđt tam giác : a+b > c =>c(a+b) > c2 =>ac+bc > c2

b+c>a => ab+ac > a2,a+c > b=>ab+bc > b2

Cộng theo vế : 2(ab+bc+ac) > a2+b2+c2

kudo shinichi
8 tháng 10 2017 lúc 9:04

undefined

Đào Thị Huyền
8 tháng 10 2017 lúc 9:57

\(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)

=> a^2 + b^2 + c^2 +2ac+2bc+2ab = 3(ab+bc+ab)

=> a^2 + b^2 + c^2 = ac+ab+bc

=> a^2 + b^2 + c^2 -ac-ab-bc =0

=>a^2 - ac + b^2 -ab +c^2 -bc =0

=> a(a-c) + b(b-a) + c(c-b) = 0

=> a(a-c)=0 , b(b-a)=0 , c(c-b)=0

=> a=0 a-c=0 => a=c

b=0 b-a =0 => b=a

c=0 c-b=0=> c=b

=> a=b=c

Võ Hồng Quân Kaito Kid
8 tháng 10 2017 lúc 9:59

WHO CAN HEPL ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!