Tìm x thuộc Z để các số sau là số nguyên và tính giá trị đó:
a) A = 3x-2/x+3
b) 3x+9/x-4
c) 6x+5/2x-1
Tìm x thuộc z để các phân số sau nhận giá trị là 1 số nguyên
a)3x+9/x+4
b)2x-2/2x+3
a)
Để : \(\frac{3.x+9}{x+4}\)là số nguyên thì :
3.x + 9 \(⋮\)x + 4
=> 3.x + 12 - 3 \(⋮\)x + 4
=> 3 . ( x + 4 ) - 3\(⋮\)x + 4
=> -3 \(⋮\)x + 4 . Vì 3 . ( x + 4 ) \(⋮\)x + 4
=> x + 4 \(\in\)Ư( -3 ) \(\in\){ -1; 1; -4; 4 }
=> x = { -5; -3; -9; -1 } để \(\frac{3.x+9}{x+4}\)là một số nguyên
b)
Để : \(\frac{2.x-2}{2.x+3}\)là một số nguyên thì :
2.x - 2 \(⋮\)2.x + 3
2.x + 3 - 5 \(⋮\)2.x + 3
=> -5 \(⋮\)2.x + 3 . Vì 2.x + 3 \(⋮\)2.x + 3
=> 2.x + 3 \(\in\)Ư( -5 ) \(\in\){ -1; 1; -5; 5 }
=> 2.x = { -4; -2; -8; 2 }
=> x = { -2; -1; -4; 1 } để \(\frac{2.x-2}{2.x+3}\)là một số nguyên
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp .
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
tôi mong các bn sẽ ko làm như vậy !!!!!
a=x+5/x+1 b=2x+4/x+3 c=3x+8/x-1 d=2x-3/x-1 e=5x+9/x+5 g=4x+9/2x+1 h=6x+5/2x-1 i=4x-6/2x+1 k=4x+4/2x+4 n=4x+6/2x+2
Tìm số nguyên của x để mỗi phân thức sau có giá trị là số nguyên:
a) (x^4 - 2x^3 - 3x^2 + 8x - 1) / (x^2 - 2x +1)
b) (x^4 + 3x^3 +2x^2 + 6x -2) / (x^2 + 2)
MK ko biế đúng ko nữa , sai thì ý kiến
a)
b)
Chúc các bn hok tốt
Tham khảo nhé
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(C=\dfrac{x^4+3x^3+2x^2+6x-2}{x^2+2}\)
\(C=\dfrac{\left(x^2+3x\right)\left(x^2+2\right)-2}{x^2+2}=x^2+3x-\dfrac{2}{x^2+2}\)
\(C\in Z\Leftrightarrow2⋮\left(x^2+2\right)\)
\(\Leftrightarrow x^2+2=2\Rightarrow x=0\)
cho C= 6x-1/3x+2 . Tìm x thuộc Z để C có giá trị nguyên và M=5x+11 có giá trị là số chính phương
\(C=\frac{6x-1}{3x+2}=\frac{6x+4-5}{3x+2}=2-\frac{5}{3x+2}\)là số nguyên \(\Leftrightarrow\frac{5}{3x+2}\)nguyên mà \(x\)nguyên nên
\(3x+2\inƯ\left(5\right)=\left\{-5,-1,1,5\right\}\Leftrightarrow x\in\left\{-1,1\right\}\)(vì \(x\)nguyên)
Thử lại thấy \(x=1\)thỏa mãn \(M=5x+11\)là số chính phương.
Vậy giá trị của \(x\)thỏa mãn là \(1\).
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
Bài 1: CM đẳng thức sau:
(x^2-xy+y^2)(x+y)=x^3+y^3.
Bài 2: Chứng tỏ rằng các đa thức sau không phụ thuộc vào biến :
(x^2+2x+3)(3x^2-2x+1)-3x^2(x^2+1)-4x(x-1).
Bài 3: Tìm x biết :
(3x-1)(2x+7)-(x+1)(6x-5)=16.
Bài 4: CM rằng với mọi n thuộc Z thì:
n(n+5)-(n-3)(n+2) chia hết cho 6.
Bài 5: CM rằng với mọi số nguyên a giá trị của biểu thức:
a(a-1)-(a+3)(a+2) chia hết cho 6.
Bài 6: Tính giá trị của biểu thức sau bằng cách hợp lí:
A=x^5-100x^4+100x^3-100x^2+100x-9 tại x=99.
5. Ta có: a(a - 1) - (a + 3)(a + 2) = a2 - a - a2 - 2a - 3a - 6
= -6a - 6 = -6(a + 1) \(⋮\)6
<=> -6(a + 1) \(⋮\)6 \(\forall\)a \(\in\)Z
<=> a(a - 1) - (a + 3)(a + 2) \(⋮\) 6 \(\forall\)a \(\in\)Z
6. Thay x = 99 vào biểu thức A, ta có:
A = 995 - 100.994 + 100. 993 - 100.992 + 100 . 99 - 9
A = 995 - (99 + 1).994 + (99 + 1).993 - (99 + 1).992 + (99 + 1).99 - 9
A = 995 - 995 - 994 + 994 + 993 - 993 - 992 + 992 + 99 - 9
A = 99 - 9
A = 90
Vậy ....
Bài 3:
(3x-1)(2x+7)-(x+1)(6x-5)=16.
=> 6x2+21x-2x-7-(6x2-5x+6x-5)=16
=> 6x2+21x-2x-7-6x2+5x-6x+5=16
=> 18x-2=16
=> 18x=16+2
=> 18x=18
=> x=1
Bài 4:
ta có : \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)=n^2+5n-\left(n^2+2n-3n-6\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6=6\left(n+1\right)⋮6\)
⇔6(n+1) chia hết cho 6 với mọi n là số nguyên
⇔n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên
vậy n(n+5)−(n−3)(n+2) chia hết cho 6 với mọi n là số nguyên (đpcm)
Bài 6:
\(A=x^5-100x^4+100x^3-100x^2+100x-9\)
\(\Rightarrow A=x^5-\left(99+1\right)x^4+\left(99+1\right)x^3-\left(99+1\right)x^2+\left(99+1\right)x-9\)
\(\Rightarrow A=x^5-99x^4-x^4+99x^3+x^3-99x^2-x^2+99x+x-9\)
\(\Rightarrow A=\left(x^5-99x^4\right)-\left(x^4-99x^3\right)+\left(x^3-99x^2\right)-\left(x^2-99x\right)+x-9\)
\(\Rightarrow A=x^4\left(x-99\right)-x^3\left(x-99\right)+x^2\left(x-99\right)-x\left(x-99\right)+x-9\)
\(\Rightarrow A=\left(x-99\right)\left(x^4-x^3+x^2-x\right)+x-9\)
Thay 99=x, ta được:
\(A=\left(x-x\right)\left(x^4-x^3+x^2-x\right)+x-9\)
\(\Rightarrow A=x-9\)
Thay x=99 ta được:
\(A=99-9=90\)
TL:
bài 4:
<=>n^2+5n-n^2-2n+3n+6
<=>6n+6
<=>6(n+1)
mà 6(n+1)\(⋮\) 6
=>n(n+5)-(n-3)(n+2)\(⋮\) 6(đpcm)
tìm x nguyên để các phân số sau là số nguyên và tính giá trị đó : A=3x+9/x-4
\(A=\frac{3x+9}{x-4}=\frac{x-4+2x+13}{x-4}=1+\frac{2x+13}{x-4}\)
\(A=1+\frac{x-4+x+9}{x-4}=1+1+\frac{x+9}{x-4}\)
\(A=2+\frac{x-4+13}{x-4}=2+1+\frac{13}{x-4}\)
\(A=3+\frac{13}{x-4}\)
Để A nguyên thì x - 4 thuộc Ư(13) = {+-1 ; +- 13}
x - 4 1 -1 13 -13
x 5 3 17 9
Vậy để A nguyên thì x thuộc {3 ; 5 ; 9 ; 17}
ĐKXĐ: x-4 khác 0 => x khác 4
\(\frac{3x+9}{x-4}=\frac{3x-12+21}{x-4}=\frac{3\left(x-4\right)+21}{x-4}=3+\frac{21}{x-4}\)
A nguyên => \(\frac{21}{x-4}\)nguyên
=> 21 chia hết cho x-4
=> x-4 thuộc Ư(21)={-21;;-7;-3;-1;1;3;7;21}
=> x thuộc (-17;-3;1;3;7;11;25)
Sau đó tính A ra nha b:)
\(A=\frac{3x+9}{x-4}=\frac{3\left(x-4\right)+21}{x-4}=\frac{3\left(x-4\right)}{x-4}+\frac{21}{x-4}=3+\frac{21}{x-4}\left(ĐK:x\ne4\right)\)
Để A nguyên \(\Rightarrow21⋮x-4\)hay \(x-4\inƯ\left(21\right)\)
Ta có : \(x-4\inƯ\left(21\right)\in\left\{\pm1;\pm3;\pm7;\pm21\right\}\)
Đến bước này bạn có thể lập bảng . Nhưng mình làm tắt nhé
\(\Rightarrow x\in\left\{5;3;7;1;11;-3;25;-17\right\}\)
Đặt x vào rồi sẽ tính được A
3. Xác định x thỏa mãn:
a) (x-(3/5).(x+2/7)>0
b) (x+(3/2).(x-(3/2)<0
c) (2x-(1/2).(3x-(1/3)<0
d) (5x-(1/2) : ( 1,25 - 3x)
4. Tìm x thuộc Z để : \(\frac{x-5}{9-x}\)là số hữu tỉ dương.
5.Tìm các số nguyên x, y biết :
a) \(\frac{1}{x}-\frac{y}{6}=\frac{1}{3}\)
b) \(\frac{x}{2}+\frac{3}{y}=\frac{5}{4}\)
6. Tìm x thuộc Z để các số sau là số nguyên và tính giá trị đó:
a) A=\(\frac{3x-2}{x+3}\)
b)B=\(\frac{3x+9}{x-4}\)
c) C=\(\frac{6x+5}{2x-1}\)
7. Tìm x biết:
a) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
b) \(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2003}\)
Bạn nào onl giải hộ mình bài nào cũng được miễn là đúng. Mình cần gấp.