Chứng minh rằng trong 9 nguyên bất kì luôn tìm được 5 số có tổng chia hết cho 5
chứng minh rằng trong 9 số tự nhiên bất kì luôn chọn được 5 số có tổng chia hết cho 5
Số đó là :
56789 . Tổng của chúng = 35
Đáp số : 56789
Cho 9 số nguyên bất kì. Chứng minh rằng ta luôn luôn chọn đc 5 số từ 9 số đó sao cho tổng 5 số được chọn chia hết cho 5
bạn lên mạng coi có nhiều bài tương tự á
cứng minh rằng trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3
Để làm đc bài này bạn cần áp dụng phương pháp đồng dư,chắc chắn sẽ ra,
Giúp mình nha!
Chứng minh trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3
Bài này mình nghĩ có nhiều cách giải.
Cách 1: Có 5 số, và 3 số dư khi chia cho 3 là 0;1;2
Nếu có 3,4 hay 5 số mà có cùng số dư khi chia cho 3 thì tổng 3 trong số đó chia hết cho 3.
Nếu có ít hơn 3 nghĩa là nhiều nhất 2 số có cùng số dư khi chia cho 3 thì trong 5 số đó cùng tồn tại các số chia 3 dư 0;1;2 nên tổng 3 số có số dư khi chia cho 3 khác nhau sẽ chia hết cho 3.
Do đó trong 5 số nguyên bất kì luôn tìm được 3 số có tổng chia hết cho 3.
Cách 2: Một số khi chia cho 3 sẽ nhận 1 trong 3 số dư. Mà có 5 số => Có ít nhất 2 số cùng số dư khi chia cho 3.
+Nếu có 3 số cùng dư trở lên thì lấy 3 trong số các số đó cộng lại sẽ được tổng chia hết cho 3.
+Nếu chỉ có 2 số có cùng số dư thì chia 5 số thành 3 cặp: (a1,a2);(a3,a4);a5. Trong đó các số cùng cặp sẽ có cùng số dư khi chia cho 3.Các cặp này phải lần lượt nhận các số dư khác nhau khi chia cho 3. Chọn một số bất kì từ mỗi cặp và cộng lại sẽ được tổng chia hết cho 3 (do tổng 3 số dư chia hết cho 3)
mik thấy bn hơi bị rảnh đó!tự hỏi tự trả lời lun!
Cho 9 số nguyên bất kì. Chứng tỏ rằng ta luôn chọn được 5 số sao cho tổng của chúng chia hết cho 5
Chứng minh rằng trong chín số tự nhiên bất kì luôn chọn được năm số có tổng chia hết cho 5.
bảo đi cm thì đòi lấy vd ảo tưởng à ?
4 số đầu chọn số bất kì. số cuối thì luôn chọn số 0 hoặc 5
Chứng minh rằng trong 52 số nguyên dương bất kì ta luôn tìm được hai số sao cho tổng của chúng chia hết cho 100
Ta xét 51 nhóm sau:
Nhóm 1: Các số tự nhiên chia hết cho 100
Nhóm 2: Các số tự nhiên chia 100 dư 1 và 99
Nhóm 3: Các số tự nhiên chia 100 dư 2 và 98
...
Nhóm 51: Các số tự chia 100 dư 50
Nếu có 2 số cùng chia hết cho 100 thì bài toán đã chứng minh
Nếu không có 2 số chia hết 100 thì ta làm như sau:
Vì có 52 số mà có 51 nhóm nên theo nguyên lí Đi rich lê phải có 1 nhóm có tổng hoặc hiệu chia hết cho 100
=> Đpcm
đây nha bạn chúc bạn học tốt
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
Theo Đi-rich-lê ta có trong 51 số đã giả sử ở trên luôn tồn tại 2 số mà số dư của chúng khi chia cho 100 cùng rơi vào 1 cặp trong 50 cặp ở trên
=> tổng của chúng chia hết cho 100
=> dpcm
HT nha bn
chứng minh rằng trong 7 số nguyên tố bất kì, luôn tồn tại hai số có hiệu chia hết cho 12
chứng minh rằng trong 6 số tự nhiên bất kì,tồn tại hai số có hiệu chia hết cho 9
Cho 65 số tự nhiên bất kì. Chứng minh luôn tìm được 9 số có tổng chia hết cho 9. Giải theo nguyên lí Dirichlet nha