Thu gọn rồi tìm nghiệm của đa thức sau:
h(x)=x(x-1)+1
Thu gọn rồi tìm nghiệm của đa thức sau: h(x) = x(x - 1) + 1
h(x)=\(x\left(x-1\right)+1\)=0
\(x^2-x+1=0\)
\(x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=0\)
\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\)
mà \(\left(x-\dfrac{1}{2}\right)^2\) ≥0 ∀ x
=>\(\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)≥\(\dfrac{3}{4}\) ∀ x=> x ∈∅ =>đa thức vô nghiệm
Tìm nghiệm của đa thức sau:h(x)=x3-x2+x
\(x^3-x^2+x=0\)
\(x\cdot\left(x^2-x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x\left(x-1\right)=-1\end{cases}}\)
=> x = -1 ; x = 1
=> x = 1; x = 0
Vậy,.........
Thu gọn rồi tìm nghiệm của đa thức sau
a, f(x) = x(1-2x) + ( 2x^2 - x + 4)
b, g(x) = x( x - 5) - x (x + 2) + 7x
c, h(x) = x(x-1)+1
giúp mình với!!!!!!!!!!!!!
a) \(f\left(x\right)=x\left(1-2x\right)+\left(2x^2-x+4\right)\)
\(=x-2x^2+2x^2-x+4\)
\(=4\). Đây là hàm hằng nên không có nghiệm.
b) \(g\left(x\right)=x\left(x-5\right)-x\left(x+2\right)+7x\)
\(=x^2-5x-x^2-2x+7x\)
\(=0\). Đây là hàm hằng nên không có nghiệm.
c) \(H\left(x\right)=x\left(x-1\right)+1=x^2-x+1\)
Vì : \(H\left(x\right)=x^2-x+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\)
Nen đa thức này vô nghiệm.
Bài 1: Cho A(x) = x 3 – 2x2 + 5x – 2 – x 3 + x + 7 1/ Thu gọn rồi sắp xếp đa thức theo lũy thừa giảm của x. Tìm bậc, hệ số cao nhất, hệ số tự do. 2/ Tìm đa thức H(x) biết H(x) – (2x 2 + 3x – 10) = A(x) 3/ Tìm nghiệm của H(x).
`1)`
`A(x)=x^3-2x^2+5x-2-x^3+x+7`
`A(x)=(x^3-x^3)-2x^2+(5x+x)+(-2+7)`
`A(x)=-2x^2+6x+5`
Bậc của đa thức: `2`
Hệ số cao nhất: `-2`
Hệ số tự do: `5`
`2)`
`H(x)-(2x^2 + 3x – 10) = A(x)`
`H(x)-(2x^2 + 3x – 10)=-2x^2+6x+5`
`H(x)= (-2x^2+6x+5)+(2x^2 + 3x – 10)`
`H(x)=-2x^2+6x+5+2x^2 + 3x – 10`
`H(x)=(-2x^2+2x^2)+(6x+3x)+(5-10)`
`H(x)=9x-5`
`3)`
Đặt `9x-5=0`
`9x=0+5`
`9x=5`
`-> x=5/9`
Bài 4: Thu gọn rồi tìm nghiệm của các đa thức sau:
a) f(x) = x(1-2x) + (2x mũ 2 -x +4 )
b) g(x) = x(x-5) - x(x+2)+ 7x
c) h(x)= x(x-1) +1
`@` `\text {Ans}`
`\downarrow`
`4,`
`a)`
\(f(x)=x(1-2x) + (2x^2 -x +4 )=0\)
`=> x-2x^2 + 2x^2-x+4=0`
`=> (x-x)+(-2x^2+2x^2)+4=0`
`=> 4=0 (\text {vô lí})`
Vậy, đa thức không có nghiệm.
`b)`
\(g(x) = x(x-5) - x(x+2)+ 7x=0\)
`=> x^2-5x-x^2-2x+7x=0`
`=> (x^2-x^2)+(-5x-2x+7x)=0`
`=> 0=0 (\text {luôn đúng})`
Vậy, đa thức có vô số nghiệm.
`c)`
\(h(x)= x(x-1) +1=0\)
`=> x^2-x+1=0`
Vì \(x^2 \ge 0\) \(\forall\) `x`
`=> x^2 - x + 1 \ge 1`\(\forall x\)
`1 \ne 0`
`=>` Đa thức vô nghiệm.
`\text {#KaizuulvG}`
Thu gọn rồi tìm nghiệm của các đa thức sau:
a)f(x)=x(1-2x)+2x^2-x+4
b)g(x)=x(x-5)-x(x+2)+7x
a, f(x)= x - 2x^2 + 2x^2 - x + 4 = 4
b, g(x) = x^2 - 5x - x^2 - 2x + 7x = 0
Thu gọn rồi tìm nghiệm của đa thức sau
a, F(x) = x(1-2x) + ( 2x^2 - x + 4)
b, G(x) = x( x - 5) - x (x + 2) + 7x
a) F(x) = x.(1-2x) + (2x^2 + 4)
F(x) = x - 2x^2 + 2x^2 + 4
F(x) = x + 4
Để F(x) = 0
=> x + 4 = 0
x = - 4
KL: x = -4 là nghiệm của F(x)
b) G(x) = x.(x-5) - x.(x+2) + 7x
G(x) = x^2 - 5x -x^2- 2x + 7x
G(x) = (x^2 - x^2) + (7x - 5x - 2x)
G(x) = 0 + 0 = 0
=> với mọi giá trị của x đều là nghiệm của G(x)
Thu gọn rồi tìm nghiệm của đa thức sau
a, F(x) = x(1-2x) + ( 2x^2 - x + 4)
b, G(x) = x( x - 5) - x (x + 2) + 7x
Bài 1: Cho hai đa thức:
P(x) = x2 + 5x4 – 3x3 + x2 - 5x4 + 3x3 – x + 5
Q(x) = x - 5x3– x2 + 5x3 - x2 + 3x – 1
a) Thu gọn rồi sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến.
b) Tính P(x) + Q(x) và P(x) - Q(x)
c) Tìm nghiệm của đa thức P(x) + Q(x)
a.Mik làm rồi nhé!
\(b.P\left(x\right)+Q\left(x\right)=\left(2x^2-x+5\right)+\left(-2x^2+4x-1\right)\\ =2x^2-x+5-2x^2+4x-1\\ =3x+4\\ ------\\ P\left(x\right)-Q\left(x\right)=\left(2x^2-x+5\right)-\left(-2x^2+4x-1\right)\\ =2x^2-x+5+2x^2-4x+1\\ =4x^2-5x+6\)
\(c.\)nghiệm của đa thức P(x) + Q(x)
\(3x+4=0\\ \Leftrightarrow3x=-4\\ \Leftrightarrow x=\dfrac{-4}{3}\)
\(\Leftrightarrow\)vậy...