Cho ∆ABC ∽ ∆A’B’C’ với k = 1/3 .Tỉ số diện tích của hai tam giác đồng dạng bằng:
Cho tam giác ABC và tam giác A’B’C’ đồng dạng với nhau theo tỉ số k. a,Tìm tỉ số 2 đường cao tương ứng AH/A’H’ theo k b,Tìm tỉ số diện tích của tam giác ABC và tam giác A’B’C’ theo k
b) Ta có: ΔABC\(\sim\)ΔA'B'C'(gt)
nên \(\dfrac{S_{ABC}}{S_{A'B'C'}}=\left(\dfrac{AB}{A'B'}\right)^2\)(Định lí tỉ số diện tích của hai tam giác đồng dạng)
hay \(\dfrac{S_{ABC}}{S_{A'B'C'}}=k^2\)
Hãy chọn câu trả lời đúng. Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số chu vi của tam giác A’B’C’ và ABC bằng
A. 1
B. 1 k
C. k
D. k 2
Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên A B A ' B ' = A C A ' C ' = B C B ' C ' = k
Suy ra A ' B ' A B = A ' C ' A C = B ' C ' B C = 1 k
Áp dụng tính chất dãy tỉ số bằng nhau ta có
A ' B ' A B = A ' C ' A C = B ' C ' B C = A ' B ' + A ' C ' + B ' C ' A B + A C + B C = 1 k
Vậy tỉ số chu vi của tam giác A’B’C’ và ABC là 1 k
Đáp án: B
Cho ABC có AB=6cm; AC=8cm, BC=12cm. Tam giác A’B’C’ đồng dạng với tam giác ABC với tỉ số đồng dạng là 3/2.
a) Tính độ dài các cạnh của tam giác A’B’C’
b) Tính tỉ số chu vi của hai tam giác trên
a: Ta có: ΔA'B'C'∼ΔABC
nên A'B'/AB=B'C'/BC=A'C'/AC
=>A'B'/6=B'C'/12=A'C'/8=3/2
=>A'B'=9cm; B'C'=18cm; A'C'=12cm
b: Ta có: ΔA'B'C'∼ΔABC
nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)
Biết tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số đồng dạng k = 4/5 . Khi đó tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số đồng dạng là:
A. 5 4
B. 4 5
C. 1 5
D. 3 4
Hãy chọn câu trả lời đúng. Nếu tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k thì tỉ số chu vi của hai tam giác đó bằng
A. 1
B. 1 k
C. k
D. k 2
Vì tam giác ABC đồng dạng với tam giác A’B’C’ theo tỉ số k nên A B A ' B ' = A C A ' C ' = B C B ' C ' = k
Ta có:
A B A ' B ' = A C A ' C ' = B C B ' C ' = A B + A C + B C A ' B ' + A ' C ' + B ' C ' = P A B C P A ' B ' C ' = k
Vậy tỉ số chu vi của hai tam giác là k.
Đáp án: C
Cho tam giác ABC vẽ tam giác A’B’C’ đồng dạng với tam giác ABC theo tỉ số đồng dạng là K = 2/3.
Cho △ABC đồng dạng với △MNP. Biết AB= 3cm, MN=2cm, diện tích của △ABC bằng 36cm2 .
a) Tính tỉ số đồng dạng k của hai tam giác.
b) Tính diện tích của tam giác MNP.
a, △ABC~△MNP => AB/MN=3/2 => k=3/2
b, SABC/SMNP=k2=9/4
=> 36/SMNP=9/4 => SMNP=16 cm2
∆A’B’C’ ∽ ∆ABC theo tỉ số đồng dạng K= 3/5 .
a) Tính tỉ số chú vi của hai tam giác đã cho.
b) Cho biết chu vi của hai tam giác trên là 40dm, tính chu vi của mỗi tam giác.
`a)` Tỉ số đồng dạng `k=3/5`
`=>[C_[\triangle ABC]]/[C_[\triangle A'B'C']]=5/3`
`b)` Chu vi `\triangle A'B'C'` là: `C_[\triangle A'B'C]=40. 3/8=15(dm)`
Chu vi `\triangle ABC` là: `C_[\triangle ABC]=40-15=25(dm)`
Cho tam giác ABC đường cao AH, tam giác A'B'C' đường cao A'H'. Biết tam giác A'B'C' đồng dạng với tam giác ABC thei tỉ số K. Chứng minh rằng tỉ số diện tích của hai tam giác bằng bình phương tỉ số đồng dạng.
Các bạn ơi giúp mình với ❤