cho a+2b=1, a\(\ne\) 0
chứng minh : \(a^3+8b^3+2ab-a^2-4b^2=0\)
C/m rằng vs a^3 + 2ab - a^2 +8b^3 - 4b^2=0 và a khác 0 thì a=1-2b
Cho a>0, b>0, a + 2b = 1. Chứng minh
1÷8ab + 2ab ÷ a2 + 4b2 >= 3÷2
Cho \(a^3-4a^2b=2b^3-5ab^2,a\ne b\ne0\) .Tính \(P=\frac{5a^2-4b^2+2ab}{6a^2+2b^2-3ab}\) .
1 . nhá: cách làm: phân tích đề bài ta cho làm sao xuất hiện hiện các hằng đẳg thuức" \(\left(a-b\right)^3=b\left(a-b\right)^2\Leftrightarrow\frac{\left(a-b\right)^3}{\left(a-b\right)^2}=b\Rightarrow a=2b\)
từ đó chỗ nào có "a" thay vào P thì ta sẽ đc kq là 1
Cho a,b>0 và a + 2b = 1. Chứng minh rằng: \(\frac{1}{8ab}+\frac{2ab}{a^2+4b^2}\ge\frac{3}{2}\)
\(A=\frac{2ab}{4ab}+\frac{2ab}{a^2+4b^2}+\frac{1}{8ab}-\frac{1}{2}\)
áp dụng bđt AM-GM , a,b> 0
\(\Rightarrow A\ge2ab\left(\frac{4}{4ab+a^2+4b^2}\right)+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge\frac{8ab}{1}+\frac{1}{8ab}-\frac{1}{2}\)
\(\Rightarrow A\ge2-\frac{1}{2}=\frac{3}{2}\)
thu gọn các đa thức sau:
a,2a^3.(-1/2ab).a^2b
b,-2/1/3a^3c^2.1/7ac^2.6abc
c,2ab.4/3a^2b^4.7abc
d,2y.3y^2.d^2y^2
e,(-2/1/3.cd).(1/1/4c^2d).(-5/6cd)^2
g,(1/2a.1/4a^2.1/8^3)^2.2b.4b^2-8b^3
cho các số dương a,b,c thỏa mãn a+2b+3c=3. chứng minh a^2/(a+2b+căn 2ab)+4b^2/(2b+3c+căn 6bc)+9c^2/(3c+a+cawn 3ac)>=1
cho a,b,c>0. CMR
\(\frac{2ab}{3a+8b+6c}+\frac{3bc}{3b+6c+4}+\frac{3ac}{9c+4a+4b}\le\frac{a+2b+3c}{2}\)
Cho a2+b2\(\ne \)0CMR
\(\frac{2ab}{a^2+4b^2}+\frac{b^2}{3a^2+2b^2}\le\frac{3}{5} \)
Ta có \(a^2+b^2\ne0\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}a\ne0\\b\ne0\end{matrix}\right.\)
\(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)
<=> \(\dfrac{2t}{t^2+4}+\dfrac{1}{3t^2+2}\le\dfrac{3}{5}\), trong đó \(t=\dfrac{a}{b}\),
<=> 9t⁴ - 30t³ + 37t² - 20t + 4 ≥ 0
<=> (t - 1)²(3t - 2)² ≥ 0 (luôn đúng)
Vậy \(\dfrac{2ab}{a^2+4b^2}+\dfrac{b^2}{3a^2+2b^2}\le\dfrac{3}{5}\)
Cho: a^3 - 4a^2b = 2b^3 - 5ab^2 và a khác b
Tính P = (5a^2 - 4b^2 + 2ab)/(6a^2 + 2b^2 - 2ab)