Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Bùi gia long
Xem chi tiết
Bamby
Xem chi tiết
Thiên
14 tháng 3 2020 lúc 16:13

GT:cho tam giác vuông ABC ( A vuông)

AC=AD ; DAC thẳng hàng;D khác C

KL: BA là tia phân giác của góc ABD

tam giác MBC=MBD

a), xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh cung

nên tam giác ABC = tam giác ADC (c-g-c)

mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà ba nằm giữa 

=> ba là tia phân giác của góc CBD

b), xét tam giác MBCvàMBD có

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM

CB=BD (cm a)

nên tam giác MBC=MBD (c-g-c)

Khách vãng lai đã xóa
Hoàng hôn  ( Cool Team )
14 tháng 3 2020 lúc 16:21

a) Xét tam giác ABC và tam giác ADB có

AC=AD ( gt)

góc CAB=BAD ( đều = 90 độ )

AB cạnh chung

=> tam giác ABC = tam giác ADC (c-g-c)

Mà Tam giác ACB = tam giác ADB

=>góc CBA = DBA ( 2 cạnh tương ứng)

mà BA nằm giữa 

=> BA là tia phân giác của góc CBD

b), xét tam giác MBC và MBD ,có :

MB cạnh chung

Mặt Khác có góc CBA = DBA ( cm a)

mà góc CBA+ CBM=ABD+DBM

=> góc CBM=DBM   

CB=BD (cm a) 

nên tam giác MBC=MBD (c-g-c)

Khách vãng lai đã xóa
Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Bảo Trân
Xem chi tiết
Nguyễn Thị Minh Thư
Xem chi tiết
~ ŇɧạϮ Ňɧẽ๏ ~
Xem chi tiết
Nhật Hạ
26 tháng 12 2019 lúc 19:17

hình, giả thiết, kết luận tự vẽ, viết đi

Xét △ABC vuông tại A và △ABD vuông tại A

Có: AC = AD (gt)

    AB là cạnh chung

=> △ABC = △ABD (cgv)

=> ABC = ABD (2 góc tương ứng)

Và BA nằm giữa CBD

=> BA là phân giác của CBD

b, Vì △ABC = △ABD (cmt)

=> BC = BD (2 cạnh tương ứng)

Ta có: CBA + CBM = 180o (2 góc kề bù)

          DBA + DBM = 180o (2 góc kề bù)

Mà ABC = ABD (cmt)

=> CBM = DBM

Xét △CBM và △DBM 

Có: BC = BD (cmt)

    CBM = DBM (cmt)

    BM là cạnh chung

=> △CBM = △DBM (c.g.c)

Khách vãng lai đã xóa
minhanh
Xem chi tiết
minhanh
21 tháng 4 2017 lúc 8:20

B A O M N C d E P I

zZz Song ngư zZz Dễ thươ...
Xem chi tiết
Xem chi tiết
Đỗ Khánh Linh
1 tháng 5 2020 lúc 20:59

(tự vẽ hình )

câu 4:

 a) có AB2 + AC= 225

BC= 225

Pytago đảo => \(\Delta ABC\)vuông tại A

b) Xét \(\Delta MAB\)và \(\Delta MDC\)

MA = MD (gt)

BM = BC ( do M là trung điểm của BC ) 

\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )

=> \(\Delta MAB\)\(\Delta MDC\) (cgc)

c) vì \(\Delta MAB\)\(\Delta MDC\)

=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)

=> AB// DC

lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C

Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:

AB =CD (cmt)

AK = KC ( do k là trung điểm của AC )

=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)

=> KB = KD

d. do KB = KD => \(\Delta KBD\)cân tại K

=> \(\widehat{KBD}=\widehat{KDB}\)(1)

có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)

=> MD = 7.5

mà MB = 7.5

=> MB = MD 

=> \(\Delta MBD\)cân tại M

=> \(\widehat{MBD}=\widehat{MDB}\)(2)

Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)

Xét \(\Delta KBI\)và \(\Delta KDN\)có:

\(\widehat{KBI}=\widehat{KDN}\)(cmt)

\(\widehat{KBD}\)chung

KD =KB (cmt) 

=> \(\Delta KBI\)\(\Delta KDN\)(gcg)

=> KN =KI 

=. đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:24

câu 5: 

a) Xét \(\Delta ABM\)và \(\Delta MDC\):

MA=MD(gt)

MB=MC (M là trung điểm của BC)

\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )

=> \(\Delta BMA=\Delta CMD\)(cgc)

b) Xét \(\Delta\)vuông ABC 

có AM là đường trung tuyến của tam giác 

=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )

=> AM = BM = MC 

có MA =MD => AM = MD =MB =MC

=> BM +MC = AM +MD hay BC =AD

Xét \(\Delta BAC\)và \(\Delta DCA\)

AB =DC

AC chung

BC =DC

=> \(\Delta BAC\)\(\Delta DCA\)(ccc)

c. Xét \(\Delta ABM\)

BM=AM

\(\widehat{ABM}\)= 600

=> đpcm

Khách vãng lai đã xóa
Đỗ Khánh Linh
1 tháng 5 2020 lúc 21:33

câu 6; 

 Xét \(\Delta ABM\)và \(\Delta ECM\)

BM =MC ( M là trung điểm của BC)

MA =ME

\(\widehat{AMB}=\widehat{CME}\)( đối đỉnh )

=> \(\Delta ABM\)\(\Delta ECM\)(cgc)

=> AB =CE và \(\widehat{MAB}=\widehat{MEC}\)

có AB < AC => CE < AC

Xét \(\Delta CAE\) có CA>CE => \(\widehat{CAE}>\widehat{CEA}\)

có \(\widehat{MAB}=\widehat{CEA}\)=> đpcm

Khách vãng lai đã xóa
Flash Dragon
Xem chi tiết