Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao c AC=AD . Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng:
a) B4 là tia phân giác của CBD.
b) tam giácMBC = tam giácMBD.
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao c AC=AD . Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng:
a) B4 là tia phân giác của CBD.
b) tam giácMBC = tam giácMBD.
Cho tam giác ABC vuông tại A. Trên tia đối AC lấy điểm D sao cho AC=AD. Trên tia đối BA lấy điểm M bất kì. Chứng minh
BA là tia phân giác của góc CBD
Tam giác MBC=MBD
GT:cho tam giác vuông ABC ( A vuông)
AC=AD ; DAC thẳng hàng;D khác C
KL: BA là tia phân giác của góc ABD
tam giác MBC=MBD
a), xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh cung
nên tam giác ABC = tam giác ADC (c-g-c)
mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà ba nằm giữa
=> ba là tia phân giác của góc CBD
b), xét tam giác MBCvàMBD có
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
a) Xét tam giác ABC và tam giác ADB có
AC=AD ( gt)
góc CAB=BAD ( đều = 90 độ )
AB cạnh chung
=> tam giác ABC = tam giác ADC (c-g-c)
Mà Tam giác ACB = tam giác ADB
=>góc CBA = DBA ( 2 cạnh tương ứng)
mà BA nằm giữa
=> BA là tia phân giác của góc CBD
b), xét tam giác MBC và MBD ,có :
MB cạnh chung
Mặt Khác có góc CBA = DBA ( cm a)
mà góc CBA+ CBM=ABD+DBM
=> góc CBM=DBM
CB=BD (cm a)
nên tam giác MBC=MBD (c-g-c)
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AC = AD. Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng: a) BA là tia phân giác của góc CBD. b) tam giác MBC = tam giác MBD .(vẽ hình hộ luôn ạ )
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :
b )\(\Delta ABD=\Delta ACE\) a ) AM vuông góc với BC
c )\(\Delta ACD=\Delta ABE\) d ) AM là tia phân giác của góc DAE
Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE
b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .
c ) Chứng minh \(\Delta KBE=\Delta CEB\)
d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .
Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :
a ) AP = QF
b ) \(\Delta APQ=\Delta QFC\)
c ) Q là trung điểm của AC
d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB
Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC
. b ) Chứng minh AD // BC .
c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .
Mình đang cần gấp ạ
Cho tam giác ABC vuông tại A có AB nhỏ hơn AC. Gọi M là trung điểm của cạnh BC. Trên đoạn AM lấy điểm E bất kì khác A và M. Trên tia đối của tia MA lấy điểm F sao cho M là trung điểm của EF
a) Chứng minh \(\Delta BME=\Delta CMF\)
b) Từ C kẻ đường thẳng vuông góc với AC cắt tai AM tại N. Chứng minh góc ABE bằng góc NCF
Cho tam giác ABC vuông tại A. Trên tia đối của tia AC lấy điểm D sao cho AC = AD. Trên tia đối của tia BA lấy điểm M bất kì. Chứng minh rằng:
a) BA Là tia phân giác của góc CBD.
b) Tam giác MBC = tam giác MBD.
~ Help tớ với ạ ~
hình, giả thiết, kết luận tự vẽ, viết đi
Xét △ABC vuông tại A và △ABD vuông tại A
Có: AC = AD (gt)
AB là cạnh chung
=> △ABC = △ABD (cgv)
=> ABC = ABD (2 góc tương ứng)
Và BA nằm giữa CBD
=> BA là phân giác của CBD
b, Vì △ABC = △ABD (cmt)
=> BC = BD (2 cạnh tương ứng)
Ta có: CBA + CBM = 180o (2 góc kề bù)
DBA + DBM = 180o (2 góc kề bù)
Mà ABC = ABD (cmt)
=> CBM = DBM
Xét △CBM và △DBM
Có: BC = BD (cmt)
CBM = DBM (cmt)
BM là cạnh chung
=> △CBM = △DBM (c.g.c)
2. Cho tam giác ABC vuông cân tại B, O là trung điểm AC. Qua C kẻ đường thẳng d vuông góc vói BC. Gọi M là điểm bất kì trên tia đói của tia CB, đường thẳng d cắt AM tại E. Trên tia đối của tia BA lấy N sao cho BN = CM
a) Chứng minh : \(\Delta\)MON là tam giác vuông cân.
b) Chứng minh : BE // MN
c) Kẻ OP \(⊥\)MN tại P; AP cắt BE tại I. Chứng minh I là trung điểm BE
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC, trên tia đối của tia MB lấy D sao cho MD=MB. Chứng minh rằng:
a) AD=BC
b) CD vuông góc với AC
c) Đường thẳng qua B song song với AC cắt tia DC tại N. Chứng minh: \(\Delta ABM=\Delta CNM\)
Câu 4. Cho tam giác ABC có AB = 9cm, AC = 12cm, BC = 15cm, gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a) Chứng minh tam giác ABC vuông tại A. b) CM: \(\Delta MAB\) = \(\Delta MDC\). c) Gọi K là trung điểm của AC chứng minh KD = KB. d) KD cắt BC tịa I, KB cắt AD tại N chứng minh \(\Delta KNI\) cân.
Câu 5. Cho tam giác ABC vuông ở A , có C = 300 . Gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD = MA. a/ Chứng minh : AB = CD. b/ Chứng minh: \(\Delta BAC=\Delta DAC\). c/ Chứng minh : \(\Delta ABM\) là tam giác đều.
Câu 6. Cho tam giác ABC vuông ở B, gọi M là trung điểm của BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a/ \(\Delta ABM=\Delta ECM\). b/ AC > CE. c/ góc BAM>góc MAC
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
câu 6;
Xét \(\Delta ABM\)và \(\Delta ECM\)
BM =MC ( M là trung điểm của BC)
MA =ME
\(\widehat{AMB}=\widehat{CME}\)( đối đỉnh )
=> \(\Delta ABM\)= \(\Delta ECM\)(cgc)
=> AB =CE và \(\widehat{MAB}=\widehat{MEC}\)
có AB < AC => CE < AC
Xét \(\Delta CAE\) có CA>CE => \(\widehat{CAE}>\widehat{CEA}\)
có \(\widehat{MAB}=\widehat{CEA}\)=> đpcm
Cho tam giác ABC (AB=AC), AD là tia phân giác của góc BAC (D thuộc BC). Trên AD lấy điểm M bất kì sao cho M nằm giữa A và D.
a,Chứng minh tam giác ABM=tam giác ACM và chứng minh tam giác BMC là tam giác cân.
b,Đường thẳng BM cắt cạnh AC của tam giác ABC tại E, đường thẳng CM cắt cạnh AB của tam giác ABC tại F. Chứng minh AD vuông góc với EF
c,Trên tia đối của tia CA lấy điểm K (K khác C), đường thẳng BK cắt tia đối của tia DA tại N. Chứng minh KN lớn hơn BN.
Cảm ơn nhiều :333