Tìm x, biết:1/1 x 3+1/3x5+1/5x7+...+1/x(x+2)=20/41
a)1/1x3+1/3x5+1/5x7+...+1/Xx(x+3)=99/200
b)1/1x3+1/3x5+1/5x7+...+1/Xx(x+2)
a) \(\dfrac{1}{1\times3}+\dfrac{1}{3\times5}+\dfrac{1}{5\times7}+...+\dfrac{1}{x\times\left(x+3\right)}=\dfrac{99}{200}\)
Ta có: \(\left(1-\dfrac{1}{3}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\times\dfrac{1}{2}+\left(\dfrac{1}{5}-\dfrac{1}{7}\right)\times\dfrac{1}{2}+...+\left(\dfrac{1}{x}-\dfrac{1}{x+3}\right).\dfrac{1}{2}=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(\dfrac{1}{2}\times\left(1-\dfrac{1}{x+3}\right)=\dfrac{99}{200}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{200}:\dfrac{1}{2}\)
\(1-\dfrac{1}{x+3}=\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=1-\dfrac{99}{100}\)
\(\dfrac{1}{x+1}=\dfrac{1}{100}\)
\(\Rightarrow x+1=100\)
\(x=100-1\)
\(x=99\)
Công thức: \(\dfrac{1}{a\times b}=\) 1/ khoảng cách giữa a và b \(\times\left(\dfrac{1}{a}-\dfrac{1}{b}\right)\)
* Bạn làm theo công thức và vẫn dụng câu b nhé.
tìm y biết :
(1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 ) x Y =2/3
\(2.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\right).y=\frac{2}{3}\)
\(2\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\left(\frac{1}{1}-\frac{1}{11}\right).y=\frac{2}{3}\)
\(2.\frac{10}{11}.y=\frac{2}{3}\)
\(\frac{20}{11}.y=\frac{2}{3}\)
\(\Rightarrow y=\frac{11}{30}\)
Study well
tìm x biết
a, (1/1x2+1/2x3+1/5x4+...+1/99x100) X=1/1x2+2x3+3x4+...+98x99
b, X/1x3+X/3x5+X/5x7+...+X/2013x2015=4/2015
c, X+1/2015+X+2/2016=X+3/2017+X+4/2018
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
Tìm x
1/3x5+1/5x7+...+1/x(x+2)=1/9
Đặt B =\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+...+\frac{1}{x\left(x+2\right)}\)
\(\Rightarrow2B=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+...+\frac{2}{x\left(x+x+2\right)}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\)
\(\Rightarrow2B=\frac{1}{3}-\frac{1}{x+2}\)
Vì B= \(\frac{1}{9}\)\(\Rightarrow2B=\frac{1}{9}\cdot2=\frac{2}{9}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{x+2}=\frac{2}{9}\)
\(\Rightarrow\frac{1}{x+2}=\frac{1}{3}-\frac{2}{9}=\frac{3}{9}-\frac{2}{9}=\frac{1}{9}\)
\(\Rightarrow x+2=9\)
\(\Rightarrow x=9-2=7\)
Vậy x=7
tìm y ( 1/1x3 + 1/3x5 + 1/5x7 + 1/7x9 + 1/9x11 ) x y= 2/3
\(\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}\left(1-\frac{1}{11}\right)y=\frac{2}{3}\)
=> \(\frac{1}{2}.\frac{10}{11}y=\frac{2}{3}\)
=> \(\frac{5}{11}y=\frac{2}{3}\)
=>y = \(\frac{2}{3}:\frac{5}{11}\)
=> y = \(\frac{22}{15}\)
cho mk cái lời giải thích chỗ nhân 1/2 ý mk ko hiểu mong bn thông cảm
bạn phạm khánh hà ơi dấu chấm ở giữa các phân số có nghĩa là dấu nhân đó
Bài 1:Tìm x biết:
2/1x3+2/3x5+2/5x7+.....+2/x(x+2)=2015/2016
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x.\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{1}-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+\frac{2}{5}-\frac{2}{7}+...+\frac{2}{x}-\frac{2}{\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow2-\frac{2}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=2-\frac{2015}{2016}\)
\(\Rightarrow\frac{2}{x+2}=\frac{2017}{2016}\)
\(\Rightarrow2017.\left(x+2\right)=2.2016\)
\(\Rightarrow2017x+4034=4032\)
\(\Rightarrow2017x=-2\)
\(\Rightarrow x=-\frac{2}{2017}\)
Vậy......
\(\frac{2}{1\cdot3}+\frac{2}{3\cdot5}+...+\frac{2}{x\cdot\left(x+2\right)}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(=1-\frac{1}{x+2}=\frac{2015}{2016}\)
=>\(\frac{1}{x+2}=\frac{1}{2016}\)
=>\(x+2=2016\)
=>\(x=2014\)
Vậy.......
Ta có:
\(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{x\left(x+2\right)}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow1-\frac{1}{x+2}=\frac{2015}{2016}\)
\(\Rightarrow\frac{1}{x+2}=1-\frac{2015}{2016}=\frac{1}{2016}\)
\(\Rightarrow x+2=1\div\frac{1}{2016}=2016\)
\(\Rightarrow x=2016-2=2014\)
Vậy giá trị của x là 2014.
bài 1:tìm X
phần a, 1/1x2 + 1/ 2x 3 + 1/ 3 x4 + ....+ 1/ X x( X +1)= 499 / 500
phần b,1/1x3 + 1/3x5 + 1/ 5 x 7+ ....+ 1/X x ( X + 2 )= 20 /41
a) 1/1.2 + 1/2.3 + 1/3.4 + .... + 1/x.(x+1) = 499/500
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + .... + 1/x - 1/x+1 = 499/500
1 - 1/x+1 = 499/500
1/x+1 = 1 - 499/500
1/x+1 = 1/500
x + 1 = 500
x = 500 - 1
x = 499
b) 1/1.3 + 1/3.5 + 1/5.7 + .... + 1/x.(x+2) = 20/41
1/2 . [ 2/1.3 + 2/3.5 + 2/5.7 + ... + 2/x.(x+2) ] = 20/41
1/2 . [ 1 - 1/3 + 1/3 - 1/5 + 1/5 - 1/7 + ... + 1/x - 1/x+2 ] = 20/41
1/2 . [ 1 - 1/x+2 ) = 20/41
1 - 1/x+2 = 20/41 : 1/2
1 - 1/x+2 = 40/41
1/x+2 = 1 - 40/41
1/x+2 = 1/41
x + 2 = 41
x = 41 - 2
x = 39
\(\frac{1}{1x3}+\frac{1}{3x5}+\frac{1}{5x7}+......+\frac{1}{Xx\left(X+2\right)}=\frac{8}{17}\)
Tìm x, biết x là số lẻ
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow2\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+....+\frac{1}{x\left(x+2\right)}\right)=2.\frac{8}{17}\)
\(\Leftrightarrow\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{x\left(x+2\right)}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow1-\frac{1}{x+2}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=1-\frac{16}{17}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
x là số lẻ vậy x có thể là: 1 ; 3 ; 5 ; 7 ; 9
Còn lại bạn tự giải nha! Cứ dùng phương pháp loại suy thử với từng số là ra! dễ mà
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{x\left(x+2\right)}=\frac{8}{17}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{8}{17}\)
\(\Leftrightarrow\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{8}{17}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{16}{17}\)
\(\Leftrightarrow\frac{1}{x+2}=\frac{1}{17}\)
\(\Rightarrow x+2=17\Rightarrow x=15\)
a,1/1x3+1/3x5+1/5x7+1/7x9+1/X=1;b,2/3-1/3x(X-2)=1/4
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\left(1-\frac{1}{9}\right)+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{2}.\frac{8}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{4}{9}+\frac{1}{x}=1\)
\(\Rightarrow\frac{1}{x}=1-\frac{4}{9}\)
\(\Rightarrow\frac{1}{x}=\frac{5}{9}\)
\(\Rightarrow x=\frac{1.9}{5}\)
\(\Rightarrow x=\frac{9}{5}\)
Vậy x = \(\frac{9}{5}\)
b) \(\frac{2}{3}-\frac{1}{3}.\left(x-2\right)=\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{2}{3}-\frac{1}{4}\)
\(\Rightarrow\frac{1}{3}.\left(x-2\right)=\frac{5}{12}\)
\(\Rightarrow x-2=\frac{5}{12}:\frac{1}{3}\)
\(\Rightarrow x-2=\frac{5}{4}\)
\(\Rightarrow x=\frac{5}{4}+2\)
\(\Rightarrow x=\frac{13}{4}\)
Vậy x = \(\frac{13}{4}\)
_Chúc bạn học tốt_