Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trương Tuấn Dũng
Xem chi tiết
Hoàng Lê Bảo Ngọc
30 tháng 7 2016 lúc 16:30

Ta có : \(P=\frac{1}{x^2+y^2}+\frac{2}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{3}{2xy}\)

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)được :\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}\ge4\)

Áp dụng bđt \(\frac{1}{ab}\ge\frac{4}{\left(a+b\right)^2}\)được : \(\frac{3}{2xy}\ge\frac{3}{2}.\frac{4}{\left(x+y\right)^2}\ge6\)

Suy ra \(P\ge10\)

Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x+y=1\\x=y\end{cases}}\)\(\Leftrightarrow x=y=\frac{1}{2}\)

Vậy Min P = 10 khi x = y = 1/2

Vu Nguyen Minh Khiem
20 tháng 7 2017 lúc 9:35

Suy ra P≥10

Dấu "=" xảy ra khi và chỉ khi {

x+y=1
x=y

⇔x=y=12 

Vậy Min P = 10 khi x = y = 1/2

minh anh
Xem chi tiết
Daffodil Clover
Xem chi tiết
Nguyễn Hoàng Thanh
Xem chi tiết
Nguyễn Phương Anh
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
25 tháng 3 2021 lúc 21:35

xin nhá xin nhá =))

Áp dụng bất đẳng thức Cauchy-Schwarz và giả thiết x+y=1 ta có :

\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\ge\frac{\left(2x+\frac{1}{x}+2y+\frac{1}{y}\right)^2}{2}=\frac{\left[2\left(x+y\right)+\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2}{2}\ge\frac{\left(2+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2+4\right)^2}{2}=18\)

Đẳng thức xảy ra <=> x=y=1/2

Vậy ...

Khách vãng lai đã xóa
Trương Tuấn Dũng
Xem chi tiết
Trương Tuấn Dũng
Xem chi tiết
Hạnh Lương
Xem chi tiết
Nguyễn Phan Nhật Minh
Xem chi tiết